1
|
Guan L, Qi B, Tan J, Chen Y, Sun Y, Zhang Q, Zou Y. Structural Insight into the Inactive/Active States of 5-HT1AR and Molecular Mechanisms of Electric Fields in Modulating 5-HT1AR. J Chem Inf Model 2025; 65:2066-2079. [PMID: 39924812 DOI: 10.1021/acs.jcim.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Probing the differences between inactive/active states of the serotonin 1A receptor (5-HT1AR) and the dynamic receptor conformations is vital for understanding signaling transduction pathways and diverse physiological responses. Here, we compared the conformational features between the inactive and active states of 5-HT1AR and explored the role of serotonin in the activation process of 5-HT1AR by using molecular dynamics (MD) simulations. The results show that the position of TM6 and the arrangements of key motifs exhibit distinctions in the inactive and active states of 5-HT1AR. The binding of serotonin to 5-HT1AR is mostly driven by hydrophobic, aromatic stacking, anion-π, and H-bonding interactions. We also performed additional MD simulations with electric fields (EFs) of 0.01 and 0.03 V/nm to investigate the effects of EFs on the conformation of the 5-HT1AR-serotonin complex. The conformational change of 5-HT1AR and the inward movement of TM6 are increased with the field strength, indicative of a dependence on the strength of the EF. The EF of 0.03 V/nm affects the binding behaviors of serotonin with 5-HT1AR and further disturbs the activation of 5-HT1AR by serotonin. This study first reveals atomic-level information about the distinct features between inactive and active states of 5-HT1AR and demonstrates the pivotal role of EF in modulating the 5-HT1AR-ligand complex.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Yukang Chen
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, P. R. China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
2
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2025; 13:858-881. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
3
|
Rustamov KR, Baev AY. MSA clustering enhances AF-Multimer's ability to predict conformational landscapes of protein-protein interactions. BIOINFORMATICS ADVANCES 2024; 5:vbae197. [PMID: 39735576 PMCID: PMC11671036 DOI: 10.1093/bioadv/vbae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024]
Abstract
Motivation Understanding the conformational landscape of protein-ligand interactions is critical for elucidating the binding mechanisms that govern these interactions. Traditional methods like molecular dynamics (MD) simulations are computationally intensive, leading to a demand for more efficient approaches. This study explores how multiple sequence alignment (MSA) clustering enhance AF-Multimer's ability to predict conformational landscapes, particularly for proteins with multiple conformational states. Results We verified this approach by predicting the conformational landscapes of chemokine receptor 4 (CXCR4) and glucagon receptor (GCGR) in the presence of their agonists and antagonists. In our experiments, AF-Multimer predicted the structures of CXCR4 and GCGR predominantly in active state in the presence of agonists and in inactive state in the presence of antagonists. Moreover, we tested our approach with proteins known to switch between monomeric and dimeric states, such as lymphotactin, SH3, and thermonuclease. AFcluster-Multimer accurately predicted conformational states during oligomerization, which AFcluster with AlphaFold2 alone fails to achieve. In conclusion, MSA clustering enhances AF-Multimer's ability to predict protein conformational landscapes and mechanistic effects of ligand binding, offering a robust tool for understanding protein-ligand interactions. Availability and implementation Code for running AFcluster-Multimer is available at https://github.com/KhondamirRustamov/AF-Multimer-cluster.
Collapse
Affiliation(s)
- Khondamir R Rustamov
- Laboratory of Experimental Biophysics, Center for Advanced Technologies, Tashkent, 100174, Uzbekistan
| | - Artyom Y Baev
- Laboratory of Experimental Biophysics, Center for Advanced Technologies, Tashkent, 100174, Uzbekistan
- Department of Biophysics, National University of Uzbekistan, Tashkent, 100174, Uzbekistan
| |
Collapse
|
4
|
de Bruyn E, Dorn AE, Rossetti G, Fernandez C, Outeiro TF, Schulz JB, Carloni P. Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution. J Chem Inf Model 2024; 64:8215-8226. [PMID: 39462994 PMCID: PMC11558680 DOI: 10.1021/acs.jcim.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Serine 129 can be phosphorylated in pathological inclusions formed by the intrinsically disordered protein human α-synuclein (AS), a key player in Parkinson's disease and other synucleinopathies. Here, molecular simulations provide insight into the structural ensemble of phosphorylated AS. The simulations allow us to suggest that phosphorylation significantly impacts the structural content of the physiological AS conformational ensemble in aqueous solution, as the phosphate group is mostly solvated. The hydrophobic region of AS contains β-hairpin structures, which may increase the propensity of the protein to undergo amyloid formation, as seen in the nonphysiological (nonacetylated) form of the protein in a recent molecular simulation study. Our findings are consistent with existing experimental data with the caveat of the observed limitations of the force field for the phosphorylated moiety.
Collapse
Affiliation(s)
- Emile de Bruyn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Anton Emil Dorn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Faculty
of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Giulia Rossetti
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Claudio Fernandez
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPINAT), Partner of the Max Planck Institute
for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Department
of NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tiago F. Outeiro
- Department
of Experimental Neurodegeneration, Center for Biostructural Imaging
of Neurodegeneration, University Medical
Center Göttingen, 37075 Göttingen, Germany
- Max
Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational
and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE1 7RU, United
Kingdom
| | - Jörg B. Schulz
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
- JARA
Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, 52074 Aachen, Germany
| | - Paolo Carloni
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
5
|
Makhkamov M, Baev A, Kurganov E, Razzokov J. Understanding Osaka mutation polymorphic Aβ fibril response to static and oscillating electric fields: insights from computational modeling. Sci Rep 2024; 14:22246. [PMID: 39333193 PMCID: PMC11436846 DOI: 10.1038/s41598-024-72778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, impacting millions of individuals worldwide. Among its defining characteristics is the accumulation of senile plaques within the brain's gray matter, formed through the self-assembly of misfolded proteins contributing to the progressive symptoms of AD. This study investigates a polymorphic Aβ fibril under static and oscillating electric fields using molecular dynamics simulation. Specifically, we utilized a polymorphic fibrillar complex composed of two intertwined pentamer-strands of the Aβ1-40 peptide with the Osaka mutation (E22Δ), known for its toxicity and stable structure. Our findings demonstrate that a 0.3 and 0.4 V/nm electric field combined with a 0.20 GHz frequency effectively disrupts the polymorphic conformation of Aβ fibrils. Furthermore, we elucidate the molecular mechanisms underlying this disruption, providing insights into the potential therapeutic use of oscillating electric fields for AD. This research offers valuable insights into novel therapeutic approaches for combating AD pathology.
Collapse
Affiliation(s)
- Mukhriddin Makhkamov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, 100174, Tashkent, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, Imom Bukhoriy 6, 100207, Tashkent, Uzbekistan
| | - Artyom Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, 100174, Tashkent, Uzbekistan
| | - Erkin Kurganov
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000, Tashkent, Uzbekistan.
- Department of Biotechnology, School of Engineering, Tashkent State Technical University, 100095, Tashkent, Uzbekistan.
- Department of Natural Sciences, Shakhrisabz State Pedagogical Institute, Shakhrisabz Street 10, 181301, Kashkadarya, Uzbekistan.
| |
Collapse
|
6
|
Khursandov J, Mashalov R, Makhkamov M, Turgunboev F, Sharipov A, Razzokov J. Exploring α-synuclein stability under the external electrostatic field: Effect of repeat unit. J Struct Biol 2024; 216:108109. [PMID: 38964522 DOI: 10.1016/j.jsb.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a category of neurodegenerative disorders (ND) that currently lack comprehensive and definitive treatment strategies. The etiology of PD can be attributed to the presence and aggregation of a protein known as α-synuclein. Researchers have observed that the application of an external electrostatic field holds the potential to induce the separation of the fibrous structures into peptides. To comprehend this phenomenon, our investigation involved simulations conducted on the α-synuclein peptides through the application of Molecular Dynamics (MD) simulation techniques under the influence of a 0.1 V/nm electric field. The results obtained from the MD simulations revealed that in the presence of external electric field, the monomer and oligomeric forms of α-synuclein are experienced significant conformational changes which could prevent them from further aggregation. However, as the number of peptide units in the model system increases, forming trimers and tetramers, the stability against the electric field also increases. This enhanced stability in larger aggregates indicates a critical threshold in α-synuclein assembly where the electric field's effectiveness in disrupting the aggregation diminishes. Therefore, our findings suggest that early diagnosis and intervention could be crucial in preventing PD progression. When α-synuclein predominantly exists in its monomeric or dimeric form, applying even a lower electric field could effectively disrupt the initial aggregation process. Inhibition of α-synuclein fibril formation at early stages might serve as a viable solution to combat PD by halting the formation of more stable and pathogenic α-synuclein fibrils.
Collapse
Affiliation(s)
- Javokhir Khursandov
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan; Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, Tashkent 100174, Uzbekistan
| | - Rasulbek Mashalov
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan; Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, Tashkent 100174, Uzbekistan
| | - Mukhriddin Makhkamov
- Department of Chemistry, National University of Uzbekistan, Universitet 4, 100174 Tashkent, Uzbekistan; Department of Information Technologies, Tashkent International University of Education, Imom Bukhoriy 6, Tashkent 100207, Uzbekistan
| | - Farkhad Turgunboev
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
| | - Avez Sharipov
- Depatment of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan; Department of Natural Sciences, Shakhrisabz State Pedagogical Institute, Shakhrisabz Street 10, Kashkadarya 181301, Uzbekistan; Department of Biotechnology, Tashkent State Technical University, Universitet 2, Tashkent 100095, Uzbekistan.
| |
Collapse
|
7
|
Martins G, Galamba N. Wild-Type α-Synuclein Structure and Aggregation: A Comprehensive Coarse-Grained and All-Atom Molecular Dynamics Study. J Chem Inf Model 2024; 64:6115-6131. [PMID: 39046235 PMCID: PMC11323248 DOI: 10.1021/acs.jcim.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
α-Synuclein (α-syn) is a 140 amino acid intrinsically disordered protein (IDP) and the primary component of cytotoxic oligomers implicated in the etiology of Parkinson's disease (PD). While IDPs lack a stable three-dimensional structure, they sample a heterogeneous ensemble of conformations that can, in principle, be assessed through molecular dynamics simulations. However, describing the structure and aggregation of large IDPs is challenging due to force field (FF) accuracy and sampling limitations. To cope with the latter, coarse-grained (CG) FFs emerge as a potential alternative at the expense of atomic detail loss. Whereas CG models can accurately describe the structure of the monomer, less is known about aggregation. The latter is key for assessing aggregation pathways and designing aggregation inhibitor drugs. Herein, we investigate the structure and dynamics of α-syn using different resolution CG (Martini3 and Sirah2) and all-atom (Amber99sb and Charmm36m) FFs to gain insight into the differences and resemblances between these models. The dependence of the magnitude of protein-water interactions and the putative need for enhanced sampling (replica exchange) methods in CG simulations are analyzed to distinguish between force field accuracy and sampling limitations. The stability of the CG models of an α-syn fibril was also investigated. Additionally, α-syn aggregation was studied through umbrella sampling for the CG models and CG/all-atom models for an 11-mer peptide (NACore) from an amyloidogenic domain of α-syn. Our results show that despite the α-syn structures of Martini3 and Sirah2 with enhanced protein-water interactions being similar, major differences exist concerning aggregation. The Martini3 fibril is not stable, and the binding free energy of α-syn and NACore is positive, opposite to Sirah2. Sirah2 peptides in a zwitterionic form, in turn, display termini interactions that are too strong, resulting in end-to-end orientation. Sirah2, with enhanced protein-water interactions and neutral termini, provides, however, a peptide aggregation free energy profile similar to that found with all-atom models. Overall, we find that Sirah2 with enhanced protein-water interactions is suitable for studying protein-protein and protein-drug aggregation.
Collapse
Affiliation(s)
- Gabriel
F. Martins
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nuno Galamba
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
8
|
Jin X, Hu X, Chen J, Shan L, Hao D, Zhang R. Electric field induced the changes in structure and function of human transforming growth factor beta receptor type I: from molecular dynamics to docking. J Biomol Struct Dyn 2024:1-12. [PMID: 38516997 DOI: 10.1080/07391102.2024.2329288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
The transforming growth factor beta (TGF-β) signaling pathway is believed to play essential roles in several physiological activities, including cancer. TGF-β receptor type I (TBR-I) is a key membrane receptor protein in the TGF-β signaling pathway, which relates to many intracellular biological effects. In recent years, cold atmospheric plasma (CAP) has been found to have promising prospects in selective anticancer therapy and has confirmed its essential role in the TGF-β signaling pathway. However, the ambiguous effect of CAP-induced electric field (EF) on TBR-I still limits the application of CAP in clinical therapy. Molecular dynamics is applied to assess the effect of EF on the structure of the extracellular domain of TBR-I using a series of indicators and methods, and then we discuss the ligand binding ability of TBR-I. Results show that moderate EF intensities' structural restraints may contribute to the structural stability and ligand-binding ability of TBR-I, but an EF higher than 0.1 V/nm will be harmful. What's more, EF induces a change in the docking interface of TBR-I, showing the conformation and position of special sequences of residues decide the ligand binding surface. The relevant results suggest that CAP-induced EF plays a crucial role in receptor-receptor interaction and provides significant guidelines for EF-related anticancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xinrui Jin
- School of Energy and Electrical Engineering, Chang'an University, Xi'an, China
| | - Xiaochuan Hu
- School of Energy and Electrical Engineering, Chang'an University, Xi'an, China
| | - Jiayu Chen
- School of Energy and Electrical Engineering, Chang'an University, Xi'an, China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Nebesnaya KS, Makhmudov AR, Rustamov KR, Rakhmatullina NSH, Rustamova SI, Mirkhodjaev UZ, Charishnikova OS, Sabirov RZ, Baev AY. Inorganic polyphosphate regulates functions of thymocytes via activation of P2X purinoreceptors. Biochim Biophys Acta Gen Subj 2024; 1868:130523. [PMID: 38006987 DOI: 10.1016/j.bbagen.2023.130523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Inorganic polyphosphate (polyP) is an ancient polymer, which was proven to be a signalling molecule in the mammalian brain, mediating the communication between astrocytes via activation of P2Y1 purinoreceptors and modulating the activity of neurons. There is very limited information regarding the ability of polyP to transmit the information as an agonist of purinoreceptors in other cells and tissues. Here, we show that application of polyP to the suspension of primary thymocytes increases the concentration of intracellular calcium. PolyP evoked calcium signal was dependent on the presence of P2X inhibitors but not P2Y1 inhibitor. PolyP dependent increase in intracellular calcium concentration caused mild mitochondrial depolarization, which was dependent on inhibitors of purinoreceptors, extracellular calcium and inhibitor of mitochondrial calcium uniporter but wasn't dependent on cyclosporin A. Application of polyP modulated cell volume regulation machinery of thymocytes in calcium dependent manner. Molecular docking experiments revealed that polyP can potentially bind to several types of P2X receptors with binding energy similar to ATP - natural agonist of P2X purinoreceptors. Further molecular dynamics simulations with P2X4 showed that binding of one molecule of polyP dramatically increases permeability of this receptor-channel for water molecules. Thus, in this research we for the first time showed that polyP can interact with P2X receptors in thymocytes and modulate physiological processes.
Collapse
Affiliation(s)
- Kamila S Nebesnaya
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Albert R Makhmudov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Khondamir R Rustamov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | | | - Sarvinoz I Rustamova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ulugbek Z Mirkhodjaev
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Oksana S Charishnikova
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Artyom Y Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan; Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan.
| |
Collapse
|
10
|
Zhou ZD, Kihara AH. Neurodegenerative Diseases: Molecular Mechanisms and Therapies. Int J Mol Sci 2023; 24:13721. [PMID: 37762040 PMCID: PMC10530763 DOI: 10.3390/ijms241813721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive degeneration or death of neurons in the central or peripheral nervous system [...].
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo 09606-045, SP, Brazil
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, SP, Brazil
| |
Collapse
|