Cheng Y, Zhang Y, Huang P, Cheng Q, Ding H. Luteolin ameliorates pentetrazole-induced seizures through the inhibition of the TLR4/NF-κB signaling pathway.
Epilepsy Res 2024;
201:107321. [PMID:
38382229 DOI:
10.1016/j.eplepsyres.2024.107321]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy represents a prevalent neurological disorder in the population, and the existing antiepileptic drugs (AEDs) often fail to adequately control seizures. Inflammation is recognized as a pivotal factor in the pathophysiology of epilepsy. Luteolin, a natural flavonoid extract, possesses anti-inflammatory properties and exhibits promising neuroprotective activity. Nevertheless, the precise molecular mechanisms underlying the antiepileptic effects of luteolin remain elusive. In this study, we established a rat model of epilepsy using pentylenetetrazole (PTZ) to induce seizures. A series of behavioral experiments were conducted to assess behavioral abilities and cognitive function. Histological techniques, including HE staining, Nissl staining, and TUNEL staining, were employed to assess hippocampal neuronal damage. Additionally, Western blotting, RT-qPCR, and ELISA were utilized to analyze the expression levels of proteins involved in the TLR4/IκBα/NF-κB signaling pathway, transcription levels of apoptotic factors, and levels of inflammatory cytokines, respectively. Luteolin exhibited a dose-dependent reduction in seizure severity, prolonged the latency period of seizures, and shortened seizure duration. Furthermore, luteolin prevented hippocampal neuronal damage in PTZ-induced epileptic rats and partially restored behavioral function and learning and memory abilities. Lastly, PTZ kindling activated the TLR4/IκBα/NF-κB pathway, leading to elevated levels of the cytokines TNF-α, IL-6 and IL-1β, which were attenuated by luteolin. Luteolin exerted anticonvulsant and neuroprotective activities in the PTZ-induced epileptic model. Its mechanism was associated with the inhibition of the TLR4/IκBα/NF-κB pathway, alleviating the immune-inflammatory response in the post-epileptic hippocampus.
Collapse