1
|
Lalín-Pousa V, Conde-Cid M, Díaz-Raviña M, Arias-Estévez M, Fernández-Calviño D. Acetamiprid retention in agricultural acid soils: Experimental data and prediction. ENVIRONMENTAL RESEARCH 2025:120835. [PMID: 39805418 DOI: 10.1016/j.envres.2025.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The overuse of pesticides in agriculture has led to widespread pollution of soils and water resources, becoming a problem of great concern. Nowadays, special attention is given to neonicotinoids, particularly acetamiprid, the only neonicotinoid insecticide allowed for outdoor use in the European Union. Once acetamiprid reaches the soil, adsorption/desorption is the main process determining its bioavailability and environmental fate. Therefore, in this work, the adsorption/desorption behaviour of acetamiprid in 60 agricultural soils was studied. The results indicate that acetamiprid has a low affinity for soil constituents, with values ranging from 0.2 to 4.28 L kg-1 for Kd(ads). At the same time, acetamiprid shows high desorption levels (up to 96.3%), indicating that it is poorly retained in soils, thus presenting high bioavailability and a potential risk for transport to other environmental compartments. Regarding the influence of soil properties on the adsorption/desorption process, soils with a high content of organic matter, clay, and exchangeable basic cations showed higher retention of acetamiprid, with greater adsorption and lower desorption. Finally, robust and universal models were successfully developed to predict the adsorption and desorption behaviour of acetamiprid in soil.
Collapse
Affiliation(s)
- Vanesa Lalín-Pousa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain
| | - Manuel Conde-Cid
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain.
| | - Montserrat Díaz-Raviña
- Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC/ Universidad de Vigo, Unidad asociada al CSIC, Spain; Misión Biológica de Galicia del Consejo Superior de Investigaciones Científicas (MBG-CSIC), Santiago de Compostela, Spain
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC/ Universidad de Vigo, Unidad asociada al CSIC, Spain
| | - David Fernández-Calviño
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC/ Universidad de Vigo, Unidad asociada al CSIC, Spain
| |
Collapse
|
2
|
Sinčić Modrić G, Marinić J, Karleuša R, Dubrović I, Kosobucki P, Broznić D. Those That Remain Caught in the "Organic Matter Trap": Sorption/Desorption Study for Levelling the Fate of Selected Neonicotinoids. Int J Mol Sci 2024; 25:5700. [PMID: 38891887 PMCID: PMC11172031 DOI: 10.3390/ijms25115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the "pesticide treadmill", thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls their availability to other fate-determining processes and thus could be useful in leveling the risk these insecticides or their structural analogues pose to the environment, animals, and human health. Sorption/desorption isotherms in four soils with different organic matter (OC) content were modelled by nonlinear equilibrium models: Freundlich's, Langmuir's, and Temkin's. Sorption/desorption parameters obtained by Freundlich's model were correlated to soil physico-chemical characteristics. Even though the OC content had the dominant role in the sorption of the three insecticides, the role of its nature as well as the chemical structure of neonicotinoids cannot be discarded. Insecticides sorbed in the glassy OC phase will be poorly available unlike those in the rubbery regions. Imidacloprid will fill the sorption sites equally in the rubbery and glassy phases irrespective of its concentration. The sorption of thiacloprid at low concentrations and acetamiprid at high concentrations is controlled by hydrophilic aromatic structures, "trapping" the insecticides in the pores of the glassy phase of OC.
Collapse
Affiliation(s)
- Gordana Sinčić Modrić
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (G.S.M.); (I.D.)
| | - Jelena Marinić
- Department for Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (J.M.); (R.K.)
| | - Romano Karleuša
- Department for Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (J.M.); (R.K.)
| | - Igor Dubrović
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (G.S.M.); (I.D.)
| | - Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, University of Science and Technology of Bydgoszcz, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Dalibor Broznić
- Department for Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (J.M.); (R.K.)
| |
Collapse
|
3
|
Ji S, Cheng H, Rinklebe J, Liu X, Zhu T, Wang M, Xu H, Wang S. Remediation of neonicotinoid-contaminated soils using peanut shell biochar and composted chicken manure: Transformation mechanisms of geochemical fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133619. [PMID: 38310841 DOI: 10.1016/j.jhazmat.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Soil remediation techniques are promising approaches to relieve the adverse environmental impacts in soils caused by neonicotinoids application. This study systematically investigated the remediation mechanisms for peanut shell biochar (PSB) and composted chicken manure (CCM) on neonicotinoid-contaminated soils from the perspective of transformation of geochemical fractions by combining a 3-step sequential extraction procedure and non-steady state model. The neonicotinoid geochemical fractions were divided into labile, moderate-adsorbed, stable-adsorbed, bound, and degradable fractions. The PSB and CCM addition stimulated the neonicotinoid transformation in soils from labile fraction to moderate-adsorbed and stable-adsorbed fractions. Compared with unamended soils, the labile fractions decreased from 47.6% ± 11.8% of the initial concentrations to 12.1 ± 9.3% in PSB-amended soils, and 7.1 ± 4.9% in PSB and CCM-amended soils, while the proportions of moderate-adsorbed and stable-adsorbed fractions correspondingly increased by 1.8-2.4 times and 2.3-4.8 times, respectively. A small proportion (<4.8%) in bound fractions suggested there were rather limited bound-residues after 48 days incubation. The PSB stimulated the -NO2-containing neonicotinoid-degraders, which promoted the degradable fractions of corresponding neonicotinoids by 8.2 ± 6.3%. Degradable fraction of neonicotinoids was the dominant fate in soils, which accounted for 58.3 ± 16.7%. The findings made beneficial theoretical supplements and provided valuable empirical evidence for the remediation of neonicotinoid-contaminated soils.
Collapse
Affiliation(s)
- Shu Ji
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haomiao Cheng
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Tengyi Zhu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Menglei Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Shanghai Construction No.2 (Group) Co., Ltd, Shanghai 200080, China
| | - Hanyang Xu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|