1
|
Ye C, Chen Y, Liu H. PM2.5 exposure deteriorates Th1/Th2 balance in pediatric asthma by downregulating ALKBH5 and enhancing SRSF1 m6A methylation. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-024-02848-6. [PMID: 39747709 DOI: 10.1007/s00484-024-02848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Accumulating evidence has shown that long-term exposure to particulate matter with aerodynamic diameter of less than 2.5 μm (PM2.5) causes Th1/Th2 imbalance and increases the risk of allergic asthma (AA) in children. However, the mechanism underlying such effect remains elusive. Here, an AA mouse model was developed by intranasal administration of ovalbumin (OVA) and uncovered that OVA-sensitized mice exhibited pathological damage of lung tissues, mucus production, augmented serum IgE levels, enhanced Th2 cells and associated cytokine levels, and diminished Th1 cells and associated cytokine levels. Meanwhile, OVA induction led to upregulation of SRSF1 in mice. Moreover, shRNA-mediated knockdown of SRSF1 suppressed AA and Th1/Th2 imbalance in OVA-sensitized mice. After PM2.5 exposure, AA and Th1/Th2 imbalance were exacerbated and SRSF1 expression was increased in OVA-sensitized mice. Mechanistic experiments demonstrated that PM2.5-mediated inhibition of ALKBH5 expression augmented SRSF1 m6A modification in human bronchial epithelial cells treated with house dust mite. In this process, the m6A-reading protein YTHDF1 bound to SRSF1 mRNA and increased its stability. Furthermore, ALKBH5 overexpression neutralized PM2.5-aggravated Th1/Th2 imbalance in OVA-sensitized mice. Altogether, PM2.5 fosters Th1/Th2 imbalance in pediatric asthma by increasing SRSF1 m6A methylation through ALKBH5 downregulation.
Collapse
Affiliation(s)
- Chunhua Ye
- Department of Emergency, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, No.416 of Chengnan East Road, Yuhua District, Changsha, Hunan, 410007, China
| | - Yifu Chen
- Department of Urology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No.86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, China.
| | - Hua Liu
- Department of Children Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, No.416 of Chengnan East Road, Yuhua District, Changsha, Hunan, 410007, China
| |
Collapse
|
2
|
Zhang J, He J, Qiang Z, Zhang J, Hao F, Song S, Chen X, Ma W, Li Y. Methyltransferase like 13 promotes malignant behaviors of bladder cancer cells through targeting PI3K/ATK signaling pathway. Open Life Sci 2024; 19:20220981. [PMID: 39711977 PMCID: PMC11662972 DOI: 10.1515/biol-2022-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common tumor worldwide, characterized by high incidence rates and mortality. This study aimed to explore the role of Methyltransferase like 13 (METTL13) in BC cells. J82 and T24 cells were cultured for in vitro experiments. Cell viability, migration, and invasion were assessed using CCK-8 and transwell assays. Senescence-associated beta-galactosidase (SA-β-gal) levels were detected using a β-galactosidase staining kit. METTL13 and cell cycle-related protein levels were quantified using RT-qPCR and Western blotting. The results showed that METTL13 was upregulated in BC cells. Silencing METTL13 decreased cell viability, migration, and invasion in BC cells, whereas METTL13 overexpression increased these parameters. Additionally, METTL13 knockdown inhibited the phosphorylation levels of PI3K, AKT, and mTOR. Inhibition of the PI3K/AKT pathway reversed the effects of METTL13 on cell viability, migration, invasion, and cell cycle-related proteins in BC cells. In vivo experiments showed that METTL13 knockdown inhibited tumor growth and development. In conclusion, this study demonstrated that METTL13 promoted the malignant behaviors of BC cells through activation of the PI3K/AKT signaling pathway. METTL13 may be a promising therapeutic target for BC in the future.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Jiejie He
- Department of Gynecologic Surgery, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Ziyang Qiang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Junli Zhang
- Department of Gynecological Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai, China
| | - Fengchen Hao
- Department of Gynecological Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai, China
| | - Shiqi Song
- Department of Gynecological Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai, China
| | - Xiuying Chen
- Department of Gynaecology and Obstetrics, The First People’s Hospital of Xining, Xining, 810000, Qinghai, China
| | - Wei Ma
- Department of Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| | - Yan Li
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China
| |
Collapse
|
3
|
Zhou W, Huang H, Teng Y, Hua R, Hu Y, Li X. KLF4 promotes cisplatin resistance by activating mTORC1 signaling in ovarian cancer. Discov Oncol 2024; 15:682. [PMID: 39565445 PMCID: PMC11579265 DOI: 10.1007/s12672-024-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Ovarian cancer (OC) is a highly fatal gynecological malignancy worldwide, and cisplatin (CDDP) is commonly used as an initial chemotherapy treatment for OC. Nonetheless, most patients ultimately face recurrence because of resistance to cisplatin. Therefore, it is imperative to investigate the underlying mechanisms of drug resistance in OC. By analyzing differential gene expression using TCGA, GDSC, and GEO public databases, we discovered that increased KLF4 expression is strongly linked to chemotherapy resistance and unfavorable outcomes in OC. Subsequent validation through immunohistochemistry and western blotting confirmed the upregulated KLF4 expression in cisplatin-resistance OC cells lines and tissues. To investigate the function of KLF4, functional experiments were performed both in vitro and in vivo. We observed that knocking down KLF4 impaired cisplatin-resistance of OC. Further mechanism research based on RNA-seq and gene enrichment analysis revealed that interfering KLF4 suppressed the activation of mTORC1 pathway. Finally, rescue experiment demonstrated that using mTORC1 pathway inhibitor could attenuate the cisplatin resistance induced by the overexpression of KLF4. In conclusion, our research indicates that KLF4 promotes cisplatin resistance through the activation of mTORC1 signaling, and proposes that inhibiting KLF4 might serve as a viable therapeutic approach to overcoming drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Wanzhen Zhou
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Huixian Huang
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Rong Hua
- Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yan Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
4
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
5
|
Santos-Pujol E, Quero-Dotor C, Esteller M. Clinical Perspectives in Epitranscriptomics. Curr Opin Genet Dev 2024; 87:102209. [PMID: 38824905 DOI: 10.1016/j.gde.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Epitranscriptomics, the study of reversible and dynamic chemical marks on the RNA, is rapidly emerging as a pivotal field in post-transcriptional gene expression regulation. Increasing knowledge about epitranscriptomic landscapes implicated in disease pathogenesis proves an invaluable opportunity for the identification of epitranscriptomic biomarkers and the development of new potential therapeutic drugs. Hence, recent advances in the characterization of these marks and associated enzymes in both health and disease blaze a trail toward the use of epitranscriptomics approaches for clinical applications. Here, we review the latest studies to provide a wide and comprehensive perspective of clinical epitranscriptomics and emphasize its transformative potential in shaping future health care paradigms.
Collapse
Affiliation(s)
- Eloy Santos-Pujol
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. https://twitter.com/@EloySantosPujol
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
6
|
Le M, Qing M, Zeng X, Cheng S. m6A-YTHDF1 Mediated Regulation of GRIN2D in Bladder Cancer Progression and Aerobic Glycolysis. Biochem Genet 2024:10.1007/s10528-024-10875-6. [PMID: 38951355 DOI: 10.1007/s10528-024-10875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The modification of N6-methyladenosine (m6A), primarily orchestrated by the reader protein YTHDF1, is a pivotal element in the post-transcriptional regulation of genes. While its role in various biological processes is well-documented, the specific impact of m6A-YTHDF1 on the regulation of GRIN2D, a gene implicated in cancer biology, particularly in the context of bladder cancer, is not thoroughly understood. Utilizing a series of bioinformatics analyses and experimental approaches, including cell culture, transfection, RT-qPCR, and western blotting, we investigated the m6A modification landscape in bladder cancer cells. The relationship between m6A-YTHDF1 and GRIN2D expression was examined, followed by functional assays to assess their roles in cancer progression and glycolytic activity. Our analysis identified a significant upregulation of m6A modification in bladder cancer tissues. YTHDF1 was found to regulate GRIN2D expression positively. Functionally, GRIN2D was implicated in promoting bladder cancer cell proliferation and enhancing aerobic glycolysis. Inhibition of the m6A-YTHDF1-GRIN2D axis resulted in the suppression of cancer progression and metabolic alterations. Through this research, we have elucidated the significant influence of the m6A-YTHDF1 axis on the modulation of GRIN2D expression, which in turn markedly impacts the progression of bladder cancer and its metabolic pathways, particularly aerobic glycolysis. Our findings uncover critical molecular dynamics within bladder cancer cells, offering a deeper understanding of its pathophysiology. Furthermore, the insights gained from this study underscore the potential of targeting the m6A-YTHDF1-GRIN2D pathway for the development of innovative therapeutic strategies in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Meixian Le
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meiying Qing
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiangju Zeng
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shunhua Cheng
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Guo H, Han Q, Guan X, Li Z, Wang Y, He L, Guo Y, Zhao L, Xue X, Liu H, Zhang C. M6A reader YTHDF1 promotes malignant progression of laryngeal squamous carcinoma through activating the EMT pathway by EIF4A3. Cell Signal 2024; 114:111002. [PMID: 38048860 DOI: 10.1016/j.cellsig.2023.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the common malignant tumors in the head and neck region, and its high migration and invasion seriously threaten the survival and health of patients. In cancer development, m6A RNA modification plays a crucial role in regulating gene expression and signaling. This study delved into the function and mechanism of the m6A reading protein YTHDF1 in LSCC. It was found that YTHDF1 was highly expressed in the GEO database and LSCC tissues. Cell function experiments confirmed that the downregulation of YTHDF1 significantly inhibited the proliferation, migration, and invasion ability of LSCC cells. Further studies revealed that EIF4A3 was a downstream target gene of YTHDF1, and knockdown of EIF4A3 similarly significantly inhibited the malignant progression of LSCC in both in vivo and in vitro experiments. The molecular mechanism studies suggested that YTHDF1-EIF4A3 may promote the malignant development of LSCC by activating the EMT signaling pathway. This study provides important clues for an in-depth understanding of the pathogenesis of LSCC and is a solid foundation for the discovery of new therapeutic targets and approaches.
Collapse
Affiliation(s)
- Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ying Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
8
|
Wang H, Min J, Ding Y, Yu Z, Zhou Y, Wang S, Gong A, Xu M. MBD3 promotes epithelial-mesenchymal transition in gastric cancer cells by upregulating ACTG1 via the PI3K/AKT pathway. Biol Proced Online 2024; 26:1. [PMID: 38178023 PMCID: PMC10768447 DOI: 10.1186/s12575-023-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy and a leading cause of cancer-related death with high morbidity and mortality. Methyl-CpG binding domain protein 3 (MBD3), a key epigenetic regulator, is abnormally expressed in several cancers, participating in progression and metastasis. However, the role of MBD3 in GC remains unknown. METHODS MBD3 expression was assessed via public databases and validated by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The prognosis of MBD3 was analysed via bioinformatics based on the TCGA dataset. The migration, invasion and proliferation of GC cells were examined by transwell, wound healing, cell counting kit (CCK)-8, colony-formation and xenograft mouse models. Epithelial-mesenchymal transition (EMT) and phosphatidylinositide 3-kinases/ protein Kinase B (PI3K/AKT) pathway markers were evaluated by Western blotting. RNA sequencing was used to identify the target of MBD3. RESULTS MBD3 expression was higher in GC tissues and cells than in normal tissues and cells. Additionally, high MBD3 levels were associated with poor prognosis in GC patients. Subsequently, we proved that MBD3 enhanced the migration, invasion and proliferation abilities of GC cells. Moreover, western blot results showed that MBD3 promoted EMT and activated the PI3K/AKT pathway. RNA sequencing analysis showed that MBD3 may increase actin γ1 (ACTG1) expression to promote migration and proliferation in GC cells. CONCLUSION MBD3 promoted migration, invasion, proliferation and EMT by upregulating ACTG1 via PI3K/AKT signaling activation in GC cells and may be a potential diagnostic and prognostic target.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Jingyu Min
- Department of Gastroenterology, Changshu No.2 People's Hospital, 68 Haiyu South Road, Changshu, 215500, China
| | - Yuntao Ding
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Zhengyue Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yujing Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shunyu Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
9
|
Rong H, Wang D, Wang Y, Dong C, Wang G. YTHDF1 in Tumor Cell Metabolism: An Updated Review. Molecules 2023; 29:140. [PMID: 38202722 PMCID: PMC10779796 DOI: 10.3390/molecules29010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancement of research on m6A-related mechanisms in recent years, the YTHDF protein family within m6A readers has garnered significant attention. Among them, YTHDF1 serves as a pivotal member, playing a crucial role in protein translation, tumor proliferation, metabolic reprogramming of various tumor cells, and immune evasion. In addition, YTHDF1 also exerts regulatory effects on tumors through multiple signaling pathways, and numerous studies have confirmed its ability to assist in the reprogramming of the tumor cell-related metabolic processes. The focus of research on YTHDF1 has shifted in recent years from its m6A-recognition and -modification function to the molecular mechanisms by which it regulates tumor progression, particularly by exploring the regulatory factors that interact with YTHDF1 upstream and downstream. In this review, we elucidate the latest signaling pathway mechanisms of YTHDF1 in various tumor cells, with a special emphasis on its distinctive characteristics in tumor cell metabolic reprogramming. Furthermore, we summarize the latest pathological and physiological processes involving YTHDF1 in tumor cells, and analyze potential therapeutic approaches that utilize YTHDF1. We believe that YTHDF1 represents a highly promising target for future tumor treatments and a novel tumor biomarker.
Collapse
Affiliation(s)
| | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; (H.R.); (D.W.); (Y.W.); (C.D.)
| |
Collapse
|
10
|
Zeng Y, Lv C, Wan B, Gong B. The current landscape of m6A modification in urological cancers. PeerJ 2023; 11:e16023. [PMID: 37701836 PMCID: PMC10493088 DOI: 10.7717/peerj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is a dynamic and reversible procession of epigenetic modifications. It is increasingly recognized that m6A modification has been involved in the tumorigenesis, development, and progression of urological tumors. Emerging research explored the role of m6A modification in urological cancer. In this review, we will summarize the relationship between m6A modification, renal cell carcinoma, bladder cancer, and prostate cancer, and discover the biological function of m6A regulators in tumor cells. We will also discuss the possible mechanism and future application value used as a potential biomarker or therapeutic target to benefit patients with urological cancers.
Collapse
Affiliation(s)
- Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
11
|
Guo Y, Wang Z, Tian Y, Li L, Dong J. A Ferroptosis-Related lncRNAs Signature Predicts Prognosis of Colon Adenocarcinoma. Life (Basel) 2023; 13:1557. [PMID: 37511932 PMCID: PMC10381171 DOI: 10.3390/life13071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Ferroptosis is a type of cellular death caused by lipid-dependent iron peroxide, which plays a major role in cancer. Long noncoding RNAs (lncRNAs) are increasingly recognized as key regulating substances in ferroptosis; (2) RNA sequencing expressions and clinical data of 519 patients with colon adenocarcinoma (COAD) were downloaded from The Cancer Genome Atlas (TCGA) database. The expression levels of lncRNAs related to ferroptosis were screened with Pearson correlation analysis. Differential genes were enriched with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. LncRNAs related to ferroptosis were determined with univariate Cox regression and multivariate Cox regression analyses, and patients with COAD were classified into high- and low-risk subgroups according to their median risk score. The prognostic value was further examined, and the association between ferroptosis-related lncRNAs (frlncRNAs) and survival in patients with high and low risks of COAD was validated. A TCGA-COAD data set was used for receiver operating characteristic (ROC) analysis and detrended correspondence analysis (DCA) to assess prediction accuracy. Finally, a nomogram was constructed to predict survival probability; (3) We obtained a model consisting of a five-frlncRNAs signature comprising AP003555.1, AP001469.3, ITGB1-DT, AC129492.1, and AC010973.2 for determining the overall survival (OS) of patients with COAD. The survival analysis and ROC curves showed that the model had good robustness and predictive performance on the TCGA training set; (4) We found that a five-frlncRNAs signature may play a potential role in anti-COAD immunity. Risk characteristics based on frlncRNAs can accurately predict the prognosis and immunotherapy response of patients with COAD.
Collapse
Affiliation(s)
- Ying Guo
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zehao Wang
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ye Tian
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Li
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Dong
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|