1
|
Cong Y, Chen X, Xing J, Li X, Pang S, Liu H. Nitric oxide signal is required for glutathione-induced enhancement of photosynthesis in salt-stressed S olanum lycopersicum L. FRONTIERS IN PLANT SCIENCE 2024; 15:1413653. [PMID: 38952846 PMCID: PMC11215142 DOI: 10.3389/fpls.2024.1413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.
Collapse
Affiliation(s)
- Yundan Cong
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Xianjun Chen
- School of Life and Health Science, Kaili University, Kaili, Guizhou, China
| | - Jiayi Xing
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Xuezhen Li
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Shengqun Pang
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Huiying Liu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| |
Collapse
|
2
|
da Silva RC, Oliveira HC, Igamberdiev AU, Stasolla C, Gaspar M. Interplay between nitric oxide and inorganic nitrogen sources in root development and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154241. [PMID: 38640547 DOI: 10.1016/j.jplph.2024.154241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen (N) is an essential nutrient for plants, and the sources from which it is obtained can differently affect their entire development as well as stress responses. Distinct inorganic N sources (nitrate and ammonium) can lead to fluctuations in the nitric oxide (NO) levels and thus interfere with nitric oxide (NO)-mediated responses. These could lead to changes in reactive oxygen species (ROS) homeostasis, hormone synthesis and signaling, and post-translational modifications of key proteins. As the consensus suggests that NO is primarily synthesized in the reductive pathways involving nitrate and nitrite reduction, it is expected that plants grown in a nitrate-enriched environment will produce more NO than those exposed to ammonium. Although the interplay between NO and different N sources in plants has been investigated, there are still many unanswered questions that require further elucidation. By building on previous knowledge regarding NO and N nutrition, this review expands the field by examining in more detail how NO responses are influenced by different N sources, focusing mainly on root development and abiotic stress responses.
Collapse
Affiliation(s)
- Rafael Caetano da Silva
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina, Londrina, PR, 86057-970, Brazil
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Marilia Gaspar
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
3
|
Sun J, Jin L, Li R, Meng X, Jin N, Wang S, Xu Z, Liu Z, Lyu J, Yu J. Effects of Different Forms and Proportions of Nitrogen on the Growth, Photosynthetic Characteristics, and Carbon and Nitrogen Metabolism in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:4175. [PMID: 38140502 PMCID: PMC10748299 DOI: 10.3390/plants12244175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. This study investigated optimal nitrogen forms and ratios for tomato growth using the 'Jingfan 502' tomato variety. Thirteen treatments were applied with varying proportions of nitrate nitrogen (NN), ammonium nitrogen (AN), and urea nitrogen (UN). Results revealed that the combination of AN and UN inhibited tomato growth and photosynthetic capacity. Conversely, the joint application of NN and UN or NN and AN led to a significant enhancement in tomato plant growth. Notably, the T12 (75%UN:25%NN) and T4 (75%NN:25%AN) treatments significantly increased the gas exchange and chlorophyll fluorescence parameters, thereby promoting the accumulation of photosynthetic products. The contents of fructose, glucose, and sucrose were significantly increased by 121.07%, 206.26%, and 94.64% and by 104.39%, 156.42%, and 61.40%, respectively, compared with those in the control. Additionally, AN favored starch accumulation, while NN and UN favored fructose, sucrose, and glucose accumulation. Gene expression related to nitrogen and sugar metabolism increased significantly in T12 and T4, with T12 showing greater upregulation. Key enzyme activity in metabolism also increased notably. In summary, T12 enhanced tomato growth by upregulating gene expression, increasing enzyme activity, and boosting photosynthesis and sugar accumulation. Growers should consider using NN and UN to reduce AN application in tomato fertilization.
Collapse
Affiliation(s)
- Jianhong Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Zitong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Jinhua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| |
Collapse
|