1
|
Betlej I, Borysiak S, Rybak K, Nasiłowska B, Bombalska A, Mierczyk Z, Lipska K, Borysiuk P, Andres B, Nowacka M, Boruszewski P. Assessment of Changes in Selected Features of Pine and Birch Wood after Impregnation with Graphene Oxide. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4464. [PMID: 39336205 PMCID: PMC11432803 DOI: 10.3390/ma17184464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In this work, pine and birch wood were modified by graphene oxide using a single vacuum impregnation method. The research results indicate that the impregnation of wood with graphene oxide increases the crystallinity of cellulose in both pine and birch wood, and the increase in crystallinity observed in the case of birch was more significant than in the case of pine. FT-IR analyses of pine samples impregnated with graphene oxide showed changes in intensity in the absorption bands of 400-600, 700-1500 cm-1, and 3200-3500 cm-1 and a peak separation of 1102 cm-1, which may indicate new C-O-C connections. In the case of birch, only some differences were noticed related to the vibrations of the OH group. The proposed modification also affects changes in the color of the wood surface, with earlywood containing more graphene oxide than latewood. Analysis of scanning electron microscope images revealed that graphene oxide adheres flat to the cell wall. Considering the differences in the anatomical structure of both wood species, the research showed a statistically significant difference in water absorption and retention of graphene oxide in wood cells. Graphene oxide does not block the flow of water in the wood, as evidenced by the absorbability of the working liquid at the level of 580-602 kg/m3, which corresponds to the value of pure water absorption by wood in the impregnation method using a single negative pressure. In this case, higher graphene oxide retention values were obtained for pine wood.
Collapse
Affiliation(s)
- Izabela Betlej
- Institute of Wood Sciences and Furniture, Department of Wood Science and Wood Protection, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (I.B.); (B.A.)
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 4 Berdychowo St., 60-965 Poznań, Poland;
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Science—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (K.R.); (M.N.)
| | - Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2 St., 00-908 Warsaw, Poland; (B.N.); (A.B.); (Z.M.)
| | - Aneta Bombalska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2 St., 00-908 Warsaw, Poland; (B.N.); (A.B.); (Z.M.)
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2 St., 00-908 Warsaw, Poland; (B.N.); (A.B.); (Z.M.)
| | - Karolina Lipska
- Institute of Wood Sciences and Furniture, Department of Technology and Entrepreneurship in Wood Industry, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (K.L.); (P.B.)
| | - Piotr Borysiuk
- Institute of Wood Sciences and Furniture, Department of Technology and Entrepreneurship in Wood Industry, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (K.L.); (P.B.)
| | - Bogusław Andres
- Institute of Wood Sciences and Furniture, Department of Wood Science and Wood Protection, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (I.B.); (B.A.)
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Science—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (K.R.); (M.N.)
| | - Piotr Boruszewski
- Institute of Wood Sciences and Furniture, Department of Technology and Entrepreneurship in Wood Industry, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (K.L.); (P.B.)
| |
Collapse
|
2
|
Zhang X, Yu D, Tang P, Chen F. Insights into the role of mitophagy in lung cancer: current evidence and perspectives. Front Pharmacol 2024; 15:1420643. [PMID: 38962310 PMCID: PMC11220236 DOI: 10.3389/fphar.2024.1420643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Lung cancer, recognized globally as a leading cause of malignancy-associated morbidity and mortality, is marked by its high prevalence and lethality, garnering extensive attention within the medical community. Mitophagy is a critical cellular process that plays a crucial role in regulating metabolism and ensuring quality control within cells. Its relevance to lung cancer has garnered significant attention among researchers and scientists. Mitophagy's involvement in lung cancer encompasses its initiation, progression, metastatic dissemination and treatment. The regulatory landscape of mitophagy is complex, involving numerous signaling proteins and pathways that may exhibit aberrant alterations or mutations within the tumor environment. In the field of treatment, the regulation of mitophagy is considered key to determining cancer chemotherapy, radiation therapy, other treatment options, and drug resistance. Contemporary investigations are directed towards harnessing mitophagy modulators, both inhibitors and activators, in therapeutic strategies, with an emphasis on achieving specificity to minimize collateral damage to healthy cellular populations. Furthermore, molecular constituents and pathways affiliated with mitophagy, serving as potential biomarkers, offer promising avenues for enhancing diagnostic accuracy, prognostic assessment, and prediction of therapeutic responses in lung cancer. Future endeavors will also involve investigating the impact of mitophagy on the composition and function of immune cells within the tumor microenvironment, aiming to enhance our understanding of how mitophagy modulates the immune response to lung cancer. This review aims to comprehensively overview recent advancements about the role of mitophagy in the tumor genesis, progenesis and metastasis, and the impact of mitophagy on the treatment of lung cancer. We also discussed the future research direction of mitophagy in the field of lung cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongzhi Yu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peng Tang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
4
|
Mesas C, Chico MA, Doello K, Lara P, Moreno J, Melguizo C, Perazzoli G, Prados J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. Int J Mol Sci 2024; 25:837. [PMID: 38255911 PMCID: PMC10815318 DOI: 10.3390/ijms25020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Service of Medical Oncology, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Li X, Li Z, Meng YQ, Qiao H, Zhai KR, Li ZQ, Wei SL, Li B. Melittin kills A549 cells by targeting mitochondria and blocking mitophagy flux. Redox Rep 2023; 28:2284517. [PMID: 38041592 PMCID: PMC11001274 DOI: 10.1080/13510002.2023.2284517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
Melittin, a naturally occurring polypeptide found in bee venom, has been recognized for its potential anti-tumor effects, particularly in the context of lung cancer. Our previous study focused on its impact on human lung adenocarcinoma cells A549, revealing that melittin induces intracellular reactive oxygen species (ROS) burst and oxidative damage, resulting in cell death. Considering the significant role of mitochondria in maintaining intracellular redox levels and ROS, we further examined the involvement of mitochondrial damage in melittin-induced apoptosis in lung cancer cells. Our findings demonstrated that melittin caused changes in mitochondrial membrane potential (MMP), triggered mitochondrial ROS burst (Figure 1), and activated the mitochondria-related apoptosis pathway Bax/Bcl-2 by directly targeting mitochondria in A549 cells (Figure 2). Further, we infected A549 cells using a lentivirus that can express melittin-Myc and confirmed that melittin can directly target binding to mitochondria, causing the biological effects described above (Figure 2). Notably, melittin induced mitochondrial damage while inhibiting autophagy, resulting in abnormal degradation of damaged mitochondria (Figure 5). To summarize, our study unveils that melittin targets mitochondria, causing mitochondrial damage, and inhibits the autophagy-lysosomal degradation pathway. This process triggers mitoROS burst and ultimately activates the mitochondria-associated Bax/Bcl-2 apoptotic signaling pathways in A549 cells.
Collapse
Affiliation(s)
- Xuan Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Zheng Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Yu-Qi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Hui Qiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Ke-Rong Zhai
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Zhen-Qing Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Shi-Lin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| | - Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, People’s Republic of China
| |
Collapse
|
6
|
Yu X, Jia S, Yu S, Chen Y, Zhang C, Chen H, Dai Y. Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies. J Nanobiotechnology 2023; 21:454. [PMID: 38017537 PMCID: PMC10685715 DOI: 10.1186/s12951-023-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
As a naturally occurring cytolytic peptide, melittin (MLT) not only exhibits a potent direct tumor cell-killing effect but also possesses various immunomodulatory functions. MLT shows minimal chances for developing resistance and has been recognized as a promising broad-spectrum antitumor drug because of this unique dual mechanism of action. However, MLT still displays obvious toxic side effects during treatment, such as nonspecific cytolytic activity, hemolytic toxicity, coagulation disorders, and allergic reactions, seriously hampering its broad clinical applications. With thorough research on antitumor mechanisms and the rapid development of nanotechnology, significant effort has been devoted to shielding against toxicity and achieving tumor-directed drug delivery to improve the therapeutic efficacy of MLT. Herein, we mainly summarize the potential antitumor mechanisms of MLT and recent progress in the targeted delivery strategies for tumor therapy, such as passive targeting, active targeting and stimulus-responsive targeting. Additionally, we also highlight the prospects and challenges of realizing the full potential of MLT in the field of tumor therapy. By exploring the antitumor molecular mechanisms and delivery strategies of MLT, this comprehensive review may inspire new ideas for tumor multimechanism synergistic therapy.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| | - Siyu Jia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Shi Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Chengwei Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Haidan Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| |
Collapse
|