1
|
Lin HK, Blake DA, Liu T, Freeman R, Lesinski GB, Yang L, Rafiq S. Muc16CD is a novel CAR T cell target antigen for the treatment of pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200868. [PMID: 39346763 PMCID: PMC11426034 DOI: 10.1016/j.omton.2024.200868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Pancreatic cancer is an aggressive malignancy with a 5-year survival rate of 13% that remains refractory to current immunotherapies, such as chimeric antigen receptor (CAR) T cells. These engineered cells can produce robust anti-tumor responses but require a reliable tumor-associated antigen (TAA) target. Here, we describe the retained ectodomain of Muc16, Muc16CD, as a novel TAA for targeting by CAR T cell therapy in pancreatic cancer. We establish clinically relevant, endogenous Muc16 and Muc16CD expression in pancreatic tumor tissues for CAR T cell targeting. Muc16CD-directed CAR T cells can both recognize and activate in a polyfunctional manner in response to patient-derived pancreatic tumor cells. Last, we demonstrate that Muc16CD-directed CAR T cells can elicit an anti-tumor response in vivo with significantly enhanced tumor control and survival benefits in a pancreatic tumor model. Overall, these findings demonstrate the utility of Muc16CD-targeted CAR T cell therapy in the novel setting of pancreatic cancer.
Collapse
Affiliation(s)
- Heather K Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dejah A Blake
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruby Freeman
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
2
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
3
|
Lahusen A, Cai J, Schirmbeck R, Wellstein A, Kleger A, Seufferlein T, Eiseler T, Lin YN. A pancreatic cancer organoid-in-matrix platform shows distinct sensitivities to T cell killing. Sci Rep 2024; 14:9377. [PMID: 38654067 DOI: 10.1038/s41598-024-60107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.
Collapse
Affiliation(s)
- Anton Lahusen
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Jierui Cai
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, Washington, DC, 20007, USA
| | - Alexander Kleger
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, 89081, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
- Organoid Core Facility, Ulm University Hospital, 89081, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Yuan-Na Lin
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Wei H, Ren H. Precision treatment of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 585:216636. [PMID: 38278471 DOI: 10.1016/j.canlet.2024.216636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous tumor comprising pancreatic cancer cells, fibroblasts, immune cells, vascular epithelial cells, and other cells in the mesenchymal tissue. PDAC is difficult to treat because of the complexity of the tissue components; therefore, achieving therapeutic effects with a single therapeutic method or target is problematic. Recently, precision therapy has provided new directions and opportunities for treating PDAC using genetic information from an individual's disease to guide treatment. It selects and applies appropriate therapeutic methods for each patient, with an aim to minimize medical damage and costs, while maximizing patient benefits. Molecular targeted therapy is effective in most clinical studies; however, it has been ineffective in large-scale randomized controlled trials of PDAC, mainly because the enrolled populations were not stratified on a molecular basis. Molecular stratification allows the identification of the PDAC population being treated, optimizing therapeutic effect. However, a systematic review of precision therapies for patients with highly heterogeneous PDAC backgrounds has not been conducted. Here, we review the molecular background and current potential therapeutic targets related to PDAC and provide new directions for PDAC precision therapy.
Collapse
Affiliation(s)
- Hongyun Wei
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; Key Laboratory of Pancreatic Diseases, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| | - He Ren
- Key Laboratory of Pancreatic Diseases, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| |
Collapse
|
5
|
Delle Cave D. Emerging Therapeutic Options in Pancreatic Cancer Management. Int J Mol Sci 2024; 25:1929. [PMID: 38339207 PMCID: PMC10855952 DOI: 10.3390/ijms25031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of <8% [...].
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, 80131 Naples, Italy
| |
Collapse
|
6
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|