1
|
Wang C, Zhang Y, Kong W, Rong X, Zhong Z, Jiang L, Chen S, Li C, Zhang F, Jiang J. Delivery of miRNAs Using Nanoparticles for the Treatment of Osteosarcoma. Int J Nanomedicine 2024; 19:8641-8660. [PMID: 39188861 PMCID: PMC11346496 DOI: 10.2147/ijn.s471900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.
Collapse
Affiliation(s)
- Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yihong Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Weihui Kong
- Department of Stomatology, the First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Ziming Zhong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lei Jiang
- Department of Geriatric Medicine, Changchun Central Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Shuhan Chen
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Chuang Li
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
2
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
3
|
Chen S, Xu Y, Yang B. CircUSP48 promotes malignant behavior by regulating CYR61 via miR-365 in osteosarcoma. Funct Integr Genomics 2023; 23:270. [PMID: 37553503 DOI: 10.1007/s10142-023-01197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Even though circular RNAs (circRNAs), a class of non-coding endogenous RNA, play a crucial role in the progression of osteosarcoma (OS), the specific function of hsa_circ_0000028 (circUSP48) remains unclear. This study aims to elucidate the mechanism by which circUSP48 regulates OS. We employed qRT-PCR and western blot techniques to quantify circDOCK1, miR-186, and DNMT3A levels. Cell proliferation was assessed using the cell counting kit-8 (CCK-8), 5-Ethynyl-20-deoxyuridine (EdU) assay, and colony formation assay. Cell migration and invasion were evaluated through Transwell and cell scratch assays. Furthermore, we performed dual-luciferase reporter, RIP, and RNA pull-down assays to investigate the association between circUSP48, miR-365, and CYR61. In addition, an in vivo xenograft model was utilized to assess the functional role of circUSP48. High levels of circUSP48 and CYR61 were observed in OS tissues and cells, while miR-365 levels were low. Knockdown of circUSP48 suppressed the multiplication, motility, and invasion of OS cells, thereby reducing carcinoma growth. Moreover, inhibition of miR-365 reversed the OS cell-suppressive effect caused by circUSP48 knockdown through direct interaction with circUSP48. Additionally, circUSP48 upregulated the expression of CYR61 by sponging miR-365. The findings suggest that circUSP48 promotes malignant behavior in OS by regulating the expression of CYR61 through miR-365, making it a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Shunguang Chen
- Department of Orthopedics, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, China.
| | - Yan Xu
- Department of Orthopedics, Gong An Country People's Hospital, Jingzhou, 434050, China
| | - Bo Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Zhu M, Sun Y, Xue H, Wu G, Wang Z, Shi J, Ma J, Gu B, Yan X. NEK6 Promotes the Progression of Osteosarcoma Through Activating STAT3 Signaling Pathway by Down-Regulation of miR-26a-5p. Int J Gen Med 2023; 16:2831-2848. [PMID: 37426517 PMCID: PMC10329465 DOI: 10.2147/ijgm.s413461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Background Osteosarcoma is a malignant tumor originating from the skeletal system. There is no effective treatment other than surgery and chemotherapy, which seriously endangers the health of children and adolescents. NEK6 is a novel discovered Serine/Threonine protein kinase that can regulate cell cycle and activate several oncogenic pathways. Methods NEK6 expression in pan-cancer including sarcoma was evaluated using analysis tools of TIMER, UALCNA and GEPIA with TCGA database, and its association with overall survival in patients with sarcoma was also analyzed. TargetScan, tarbase, microT-CDS and Starbase online software were used to predict NEK6-targeted miRNAs, including miR-26a-5p. Tumor tissues from patients with osteosarcoma were collected for NEK6 and miRNA detection using RT-qPCR. NEK6 down-regulated by siRNAs or miR-26a-5p in osteosarcoma cells was detected by RT-qPCR, Western blot and Immunofluorescence staining assays. Effects of NEK6 knockdown on proliferation, migration, invasion and apoptosis of osteosarcoma cells were detected by CCK-8, wound healing, transwell and flow cytometry, respectively. The expressions of STAT3, metastasis and apoptosis-related genes were detected by Western blot. Results High expression of NEK6 and low expression of miR-26a-5p were lowly expressed in osteosarcoma and they were negative correlation. NEK6 has been confirmed as a direct target for miR-26a-5p. In addition, NEK6 down-regulated by siRNAs or miR-26a-5p led to inhibition of cell proliferation, migration and invasion while promoting cell apoptosis. The levels of phosphorylated STAT3 and metastasis genes (MMP-2, MMP-9) were inhibited, while apoptotic gene Bax was promoted and Bcl2 was inhibited by miR-26a-5p upregulation. Conclusion NEK6 can promote osteosarcoma progression via activating STAT3 signaling pathway, which is inhibited by miR-26a-5p, suggesting that NEK6 is a potential oncogene and miR-26a-5p is a suppressor of osteosarcoma. The strategy of inhibiting of NEK6 by miR-26a-5p may be an effective approach for osteosarcoma therapy.
Collapse
Affiliation(s)
- Min Zhu
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Huawei Xue
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Gang Wu
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Zhen Wang
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Junfeng Shi
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Jiye Ma
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Baorong Gu
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Xiaoling Yan
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
5
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|