1
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
López-Cánovas JL, Naranjo-Martínez B, Diaz-Ruiz A. Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00966-2. [PMID: 38990489 DOI: 10.1007/s13402-024-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M). RESULTS Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death. CONCLUSION Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Alberto Diaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain.
| |
Collapse
|
3
|
Zafar MI, Chen X. Effects of Calorie Restriction on Preserving Male Fertility Particularly in a State of Obesity. Curr Obes Rep 2024; 13:256-274. [PMID: 38489002 DOI: 10.1007/s13679-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW Highlight the importance of exploring nutritional interventions that could be applied as alternative or supplementary therapeutic strategies to enhance men's fertility. RECENT FINDINGS Lifestyle choices have prompted extensive discussions regarding its implications and applications as a complementary therapy. The growing concern over the decline in sperm quality underscores the urgency of investigating these alternative interventions. Calorie restriction (CR) has emerged as a promising strategy to improve male fertility. The efficacy of CR depends on factors like age, ethnicity and genetics. Clinical studies, such as CALERIE, have shown an improvement in serum testosterone level and sexual drive in men with or without obesity. Additionally, CR has been shown to positively impact sperm count and motility; however, its effects on sperm morphology and DNA fragmentation remain less clear, and the literature has shown discrepancies, mainly due to the nature of technically dependent assessment tools. The review advocates a personalized approach to CR, considering individual health profiles to maximize its benefits. It underscores the need for routine, accessible diagnostic techniques in male reproductive health. It suggests that future research should focus on personalized dietary interventions to improve male fertility and overall well-being in individuals with or without obesity and unravel CR's immediate and lasting effects on semen parameters in men without obesity.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| | - Xiao Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| |
Collapse
|
4
|
Jalali P, Yaghoobi A, Rezaee M, Zabihi MR, Piroozkhah M, Aliyari S, Salehi Z. Decoding common genetic alterations between Barrett's esophagus and esophageal adenocarcinoma: A bioinformatics analysis. Heliyon 2024; 10:e31194. [PMID: 38803922 PMCID: PMC11128929 DOI: 10.1016/j.heliyon.2024.e31194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Esophageal adenocarcinoma (EAC) is a common cancer with a poor prognosis in advanced stages. Therefore, early EAC diagnosis and treatment have gained attention in recent decades. It has been found that various pathological changes, particularly Barrett's Esophagus (BE), can occur in the esophageal tissue before the development of EAC. In this study, we aimed to identify the molecular contributor in BE to EAC progression by detecting the essential regulatory genes that are differentially expressed in both BE and EAC. Materials and methods We conducted a comprehensive bioinformatics analysis to detect BE and EAC-associated genes. The common differentially expressed genes (DEGs) and common single nucleotide polymorphisms (SNPs) were detected using the GEO and DisGeNET databases, respectively. Then, hub genes and the top modules within the protein-protein interaction network were identified. Moreover, the co-expression network of the top module by the HIPPIE database was constructed. Additionally, the gene regulatory network was constructed based on miRNAs and circRNAs. Lastly, we inspected the DGIdb database for possible interacted drugs. Results Our microarray dataset analysis identified 92 common DEGs between BE and EAC with significant enrichment in skin and epidermis development genes. The study also identified 22 common SNPs between BE and EAC. The top module of PPI network analysis included SCEL, KRT6A, SPRR1A, SPRR1B, SPRR3, PPL, SPRR2B, EVPL, and CSTA. We constructed a ceRNA network involving three specific mRNAs, 23 miRNAs, and 101 selected circRNAs. According to the results from the DGIdb database, TD101 was found to interact with the KRT6A gene. Conclusion The present study provides novel potential candidate genes that may be involved in the molecular association between Esophageal adenocarcinoma and Barrett's Esophagus, resulting in developing the diagnostic tools and therapeutic targets to prevent progression of BE to EAC.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Aliyari
- Division of Applied Bioinformatics, German Cancer Research Center DKFZ Heidelberg, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Naglić DT, Mandić A, Milankov A, Pejaković S, Janičić S, Vuković N, Bajkin I, Ičin T, Manojlović M, Stokić E. Metabolic dysregulation in obese women and the carcinogenesis of gynecological tumors: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:787-797. [PMID: 38768058 PMCID: PMC11293241 DOI: 10.17305/bb.2024.10508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Obesity is a significant health issue associated with increased cancer risks, including gynecological malignancies. The worldwide rise in obesity rates is significantly impacting both cancer development and treatment outcomes. Adipose tissue plays a crucial role in metabolism, secreting various substances that can influence cancer formation. In obese individuals, dysfunctional adipose tissue can contribute to cancer development through inflammation, insulin resistance, hormonal changes, and abnormal cholesterol metabolism. Studies have shown a strong correlation between obesity and gynecological cancers, particularly endometrial and breast cancers. Obesity not only increases the risk of developing these cancers but is also associated with poorer outcomes. Additionally, obesity affects the perioperative management of gynecological cancers, requiring specialized care due to increased complications and resistance to therapy. Treatment strategies for managing metabolic dysregulation in patients with gynecological cancers include weight management, statin therapy, and insulin-sensitizing medications. Emerging studies suggest that interventions like intermittent fasting and caloric restriction may enhance the effectiveness of cancer treatments. Furthermore, targeting cholesterol metabolism, such as with statins or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, shows potential in cancer therapy. In conclusion, addressing metabolic issues, particularly obesity, is crucial in preventing and treating gynecological malignancies. Personalized approaches focusing on weight management and metabolic reprogramming may improve outcomes in these patients.
Collapse
Affiliation(s)
- Dragana Tomić Naglić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Aljoša Mandić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Institute of Oncology of Vojvodina, Sremska Kamenica, Serbia
| | - Andrijana Milankov
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Slađana Pejaković
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Stefan Janičić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nikolina Vuković
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Ivana Bajkin
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Tijana Ičin
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Mia Manojlović
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Edita Stokić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
6
|
Vitale E, Rizzo A, Santa K, Jirillo E. Associations between "Cancer Risk", "Inflammation" and "Metabolic Syndrome": A Scoping Review. BIOLOGY 2024; 13:352. [PMID: 38785834 PMCID: PMC11117847 DOI: 10.3390/biology13050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Individuals with metabolic syndrome exhibit simultaneously pro-thrombotic and pro-inflammatory conditions which more probably can lead to cardiovascular diseases progression, type 2 diabetes mellitus, and some types of cancer. The present scoping review is aimed at highlighting the association between cancer risk, inflammation, and metabolic syndrome. METHODS A search strategy was performed, mixing keywords and MeSH terms, such as "Cancer Risk", "Inflammation", "Metabolic Syndrome", "Oncogenesis", and "Oxidative Stress", and matching them through Boolean operators. A total of 20 manuscripts were screened for the present study. Among the selected papers, we identified some associations with breast cancer, colorectal cancer, esophageal adenocarcinoma, hepatocellular carcinoma (HCC), and cancer in general. CONCLUSIONS Cancer and its related progression may also depend also on a latent chronic inflammatory condition associated with other concomitant conditions, including type 2 diabetes mellitus, metabolic syndrome, and obesity. Therefore, prevention may potentially help individuals to protect themselves from cancer.
Collapse
Affiliation(s)
- Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Kazuki Santa
- Faculty of Medical Science, Juntendo University, 6-8-1 Hinode, Urayasu 279-0013, Chiba, Japan;
| | - Emilio Jirillo
- Scuola di Medicina, University of Bari, 70121 Bari, Italy;
| |
Collapse
|
7
|
Xing A, Tong HHY, Liu S, Zhai X, Yu L, Li K. The causal association between obesity and gastric cancer and shared molecular signatures: a large-scale Mendelian randomization and multi-omics analysis. Front Oncol 2023; 13:1091958. [PMID: 37954072 PMCID: PMC10639150 DOI: 10.3389/fonc.2023.1091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose While observational studies have identified obesity as a potential risk factor for gastric cancer, the causality remains uncertain. This study aimed to evaluate the causal relationship between obesity and gastric cancer and identify the shared molecular signatures linking obesity to gastric cancer. Methods A two-sample Mendelian randomization (MR) analysis was conducted using the GWAS data of body fat percentage (exposure, n = 331,117) and gastric cancer (outcome, n = 202,308). Bioinformatics and meta-analysis of multi-omics data were performed to identify key molecules mediating the causality. The meta-analysis of the plasma/serum proteome included 1,662 obese and 3,153 gastric cancer patients. Obesity and gastric cancer-associated genes were identified using seven common gene ontology databases. The transcriptomic data were obtained from TCGA and GEO databases. The Bioinformatic findings were clinically validated in plasma from 220 obese and 400 gastric cancer patients across two hospitals. Finally, structural-based virtual screening (SBVS) was performed to explore the potential FDA-approved drugs targeting the identified mediating molecules. Results The MR analysis revealed a significant causal association between obesity and gastric cancer (IVW, OR = 1.37, 95% CI:1.12-1.69, P = 0.0028), without pleiotropy or heterogeneity. Bioinformatic and meta-analysis of multi-omics data revealed shared TNF, PI3K-AKT, and cytokine signaling dysregulation, with significant upregulation of AKT1, IL-6, and TNF. The clinical study confirmed widespread upregulation of systemic inflammatory markers in the plasma of both diseases. SBVS identified six novel potent AKT1 inhibitors, including the dietary supplement adenosine, representing a potentially preventive drug with low toxicity. Conclusion Obesity causally increases gastric cancer, likely mediated by persistent AKT1/IL-6/TNF upregulation. As a potential AKT1 inhibitor, adenosine may mitigate the obesity-to-gastric cancer transition. These findings could inform preventive drug development to reduce gastric cancer risk in obesity.
Collapse
Affiliation(s)
- Abao Xing
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
- Bioinformatics Department, Guangzhou AoCe Medical Technology Co. Ltd., Guangzhou, China
| | - Henry H. Y. Tong
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
| | - Songyan Liu
- Department of Endocrine Rehabilitation, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaobing Zhai
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
| | - Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
| |
Collapse
|