1
|
González-Cardona C, López WR, Jovel J, Soto-Suárez M, Ceballos-Aguirre N. Paraburkholderia tropica Primes a Multilayered Transcriptional Defense Response to the Nematode Meloidogyne spp. in Tomato. Int J Mol Sci 2024; 25:12584. [PMID: 39684296 DOI: 10.3390/ijms252312584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Meloidogyne causes a devastating disease known as root-knot that affects tomatoes and other cash crops worldwide. Conversely, Paraburkholderia tropica has proven beneficial in mitigating the effects of various pathogens in plants. We aimed to unravel the molecular events that underlie the beneficial effects of the bacterium and the detrimental impacts of the nematode when inoculated separately or together in tomato plants. The transcriptional responses induced by P. tropica (TB group (tomato-bacteria group)), Meloidogyne spp. (TN group (tomato-nematode group)) or by the two agents (TBN group (tomato-bacteria-nematode group)) in tomato were assessed by RNA-seq. We implemented a transcript discovery pipeline which allowed the identification of 2283 putative novel transcripts. Differential expression analysis revealed that upregulated transcripts were much more numerous than downregulated ones. At the gene ontology level, the most activated term was 'hydrolase activity acting on ester bonds' in all groups. In addition, when both microbes were inoculated together, 'hydrolase activity acting on O-glycosyl compounds' was activated. This finding suggests defense responses related to lipid and carbohydrate metabolism, membrane remodeling and signal transduction. Notably, defense genes, transcription factors and protein kinases stood out. Differentially expressed transcripts suggest the activation of a multifaceted plant defense response against the nematode occurred, which was exacerbated by pre-inoculation of P. tropica.
Collapse
Affiliation(s)
- Carolina González-Cardona
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| | - Walter Ricardo López
- Departamento de Física y Química, Facultad de Ciencias Naturales, Universidad Nacional de Colombia Sede Manizales, km 9 vía Aeropuerto la Nubia, Manizales 170003, Caldas, Colombia
| | - Juan Jovel
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Mauricio Soto-Suárez
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, km 14 vía Mosquera-Bogotá, Mosquera 250047, Cundinamarca, Colombia
| | - Nelson Ceballos-Aguirre
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| |
Collapse
|
2
|
Scariolo F, Gabelli G, Magon G, Palumbo F, Pirrello C, Farinati S, Curioni A, Devillars A, Lucchin M, Barcaccia G, Vannozzi A. The Transcriptional Landscape of Berry Skin in Red and White PIWI ("Pilzwiderstandsfähig") Grapevines Possessing QTLs for Partial Resistance to Downy and Powdery Mildews. PLANTS (BASEL, SWITZERLAND) 2024; 13:2574. [PMID: 39339549 PMCID: PMC11434962 DOI: 10.3390/plants13182574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
PIWI, from the German word Pilzwiderstandsfähig, meaning "fungus-resistant", refers to grapevine cultivars bred for resistance to fungal pathogens such as Erysiphe necator (the causal agent of powdery mildew) and Plasmopara viticola (the causal agent of downy mildew), two major diseases in viticulture. These varieties are typically developed through traditional breeding, often crossbreeding European Vitis vinifera with American or Asian species that carry natural disease resistance. This study investigates the transcriptional profiles of exocarp tissues in mature berries from four PIWI grapevine varieties compared to their elite parental counterparts using RNA-seq analysis. We performed RNA-seq on four PIWI varieties (two red and two white) and their noble parents to identify differential gene expression patterns. Comprehensive analyses, including Differential Gene Expression (DEGs), Gene Set Enrichment Analysis (GSEA), Weighted Gene Co-expression Network Analysis (WGCNA), and tau analysis, revealed distinct gene clusters and individual genes characterizing the transcriptional landscape of PIWI varieties. Differentially expressed genes indicated significant changes in pathways related to organic acid metabolism and membrane transport, potentially contributing to enhanced resilience. WGCNA and k-means clustering highlighted co-expression modules linked to PIWI genotypes and their unique tolerance profiles. Tau analysis identified genes uniquely expressed in specific genotypes, with several already known for their defense roles. These findings offer insights into the molecular mechanisms underlying grapevine resistance and suggest promising avenues for breeding strategies to enhance disease resistance and overall grape quality in viticulture.
Collapse
Affiliation(s)
- Francesco Scariolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy;
| | - Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Aurélien Devillars
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| |
Collapse
|
3
|
Duan L, Wang F, Shen H, Xie S, Chen X, Xie Q, Li R, Cao A, Li H. Identification, evolution, and expression of GDSL-type Esterase/Lipase (GELP) gene family in three cotton species: a bioinformatic analysis. BMC Genomics 2023; 24:795. [PMID: 38129780 PMCID: PMC10734139 DOI: 10.1186/s12864-023-09717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.
Collapse
Affiliation(s)
- Lisheng Duan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|