1
|
Gonzalez-Garcia M, Bertrand B, Martell-Huguet EM, Espinosa-Romero JF, Vázquez RF, Morales-Vicente F, Rosenau F, Standker LH, Franco OL, Otero-Gonzalez AJ, Muñoz-Garay C. Cm-p5, a molluscan-derived antifungal peptide exerts its activity by a membrane surface covering in a non-penetrating mode. Peptides 2024; 182:171313. [PMID: 39490744 DOI: 10.1016/j.peptides.2024.171313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Amidst the health crisis caused by the rise of multi-resistant pathogenic microorganisms, Antimicrobial Peptides (AMPs) have emerged as a potential alternative to traditional antibiotics. In this sense, Cm-p5 is an AMP with fungistatic activity against the yeast Candida albicans. Its antimicrobial activity and selectivity have been well characterized; however, the mechanism of action is still unknown. This study used biophysical approaches to gain insight into how this peptide exerts its activity. Stability and fluidity of lipid membrane were explored by liposome leakage and Laurdan generalized polarization (GP) respectively, suggesting that Cm-p5 does not perturb lipid membranes even at very high concentrations (≥100 µm.L-1). Likewise, no depolarizing action was observed using 3,3'-propil-2,2'-thyodicarbocianine, a potential membrane fluorescent reporter, with C. albicans cells or the corresponding liposome models. Changes in liposome size were analyzed by Dynamic Light Scattering (DLS) data, indicating that Cm-p5 covers the vesicular surface slightly increasing liposome hydrodynamic size, without liposome rupture. These results were further corroborated with Langmuir monolayer isotherms, where no significant changes in lateral pressure or area per lipid were detected, indicating little or no insertion. Finally, data obtained from molecular dynamics simulations aligned with in vitro observations, whereby Cm-p5 slightly interacted with the fungal membrane model surface without causing significant perturbation. These results suggest Cm-p5 is not a pore-forming anti-fungal peptide and that other mechanisms of action on the membrane as some limitation of fungal nutrition or receptor-dependent transduction for depressing growth development should be explored.
Collapse
Affiliation(s)
- M Gonzalez-Garcia
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, 25th st No 455, Vedado, Plaza, Havana 10400, Cuba
| | - B Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Av. Universidad S/N, Chamilpa, Cuernavaca, Morelos 62210, México
| | - E M Martell-Huguet
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, 25th st No 455, Vedado, Plaza, Havana 10400, Cuba
| | - J F Espinosa-Romero
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Av. Universidad S/N, Chamilpa, Cuernavaca, Morelos 62210, México
| | - R F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata 1900, Argentina
| | - F Morales-Vicente
- Centro de Ingeniería Genética y Biotecnología, Avenida 31 No, La Habana 15802, Cuba
| | - F Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm 89081, Germany
| | - L H Standker
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, Ulm 89081, Germany
| | - O L Franco
- Centro de Análises Proteômicas e Bioquímica, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - A J Otero-Gonzalez
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, 25th st No 455, Vedado, Plaza, Havana 10400, Cuba
| | - C Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Av. Universidad S/N, Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
2
|
Vélez N, Argel A, Kissmann AK, Alpízar-Pedraza D, Escandón P, Rosenau F, Ständker L, Firacative C. Pore-forming peptide C14R exhibits potent antifungal activity against clinical isolates of Candida albicans and Candida auris. Front Cell Infect Microbiol 2024; 14:1389020. [PMID: 38601736 PMCID: PMC11004338 DOI: 10.3389/fcimb.2024.1389020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Invasive candidiasis is a global public health problem as it poses a significant threat in hospital-settings. The aim of this study was to evaluate C14R, an analog derived from peptide BP100, as a potential antimicrobial peptide against the prevalent opportunistic yeast Candida albicans and the emergent multidrug-resistant yeast Candida auris. Methods Antifungal susceptibility testing of C14R against 99 C. albicans and 105 C. auris clinical isolates from Colombia, was determined by broth microdilution. Fluconazole was used as a control antifungal. The synergy between C14R and fluconazole was assessed in resistant isolates. Assays against fungal biofilm and growth curves were also carried out. Morphological alterations of yeast cell surface were evaluated by scanning electron microscopy. A permeability assay verified the pore-forming ability of C14R. Results C. albicans and C. auris isolates had a geometric mean MIC against C14R of 4.42 µg/ml and 5.34 µg/ml, respectively. Notably, none of the isolates of any species exhibited growth at the highest evaluated peptide concentration (200 µg/ml). Synergistic effects were observed when combining the peptide and fluconazole. C14R affects biofilm and growth of C. albicans and C. auris. Cell membrane disruptions were observed in both species after treatment with the peptide. It was confirmed that C14R form pores in C. albicans' membrane. Discussion C14R has a potent antifungal activity against a large set of clinical isolates of both C. albicans and C. auris, showing its capacity to disrupt Candida membranes. This antifungal activity remains consistent across isolates regardless of their clinical source. Furthermore, the absence of correlation between MICs to C14R and resistance to fluconazole indicates the peptide's potential effectiveness against fluconazole-resistant strains. Our results suggest the potential of C14R, a pore-forming peptide, as a treatment option for fungal infections, such as invasive candidiasis, including fluconazole and amphotericin B -resistant strains.
Collapse
Affiliation(s)
- Norida Vélez
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Andreys Argel
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - Daniel Alpízar-Pedraza
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ciudad de La Habana, Cuba
| | | | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
3
|
Mildenberger V, Alpízar-Pedraza D, Martell-Huguet EM, Krämer M, Bolotnikov G, Otero-Gonzalez AJ, Weil T, Rodriguez-Alfonso A, Preising N, Ständker L, Vogel V, Spellerberg B, Kissmann AK, Rosenau F. The Designed Pore-Forming Antimicrobial Peptide C14R Combines Excellent Activity against the Major Opportunistic Human Pathogen Pseudomonas aeruginosa with Low Cytotoxicity. Pharmaceuticals (Basel) 2024; 17:83. [PMID: 38256916 PMCID: PMC10820675 DOI: 10.3390/ph17010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The diminishing portfolio of mankind's available antibiotics urges science to develop novel potent drugs. Here, we present a peptide fitting the typical blueprint of amphipathic and membrane-active antimicrobial peptides, denominated C14R. This 2 kDa peptide consists of 16 amino acid residues, with seven being either hydrophobic, aromatic, or non-polar, and nine being polar or positively charged, strictly separated on opposite sides of the predicted α-helix. The affinity of the peptide C14R to P. aeruginosa membranes and its intrinsic tendency to productively insert into membranes of such composition were analyzed by dynamic simulations. Its biological impact on the viability of two different P. aeruginosa reference strains was demonstrated by determining the minimal inhibitory concentrations (MICs), which were found to be in the range of 10-15 µg/mL. C14R's pore-forming capability was verified in a permeabilization assay based on the peptide-triggered uptake of fluorescent dyes into the bacterial cells. Finally, the peptide was used in radial diffusion assays, which are commonly used for susceptibility testing of antimicrobial peptides in clinical microbiology. In comparison to reference strains, six clinical P. aeruginosa isolates were clearly affected, thereby paving the way for further in-depth analyses of C14R as a promising new AMP drug in the future.
Collapse
Affiliation(s)
- Vanessa Mildenberger
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (V.M.); (M.K.); (G.B.)
| | - Daniel Alpízar-Pedraza
- Center for Pharmaceutical Research and Development (CIDEM), 26th Avenue, No. 1605, Nuevo Vedado, La Habana 10400, Cuba;
| | - Ernesto M. Martell-Huguet
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 and I, La Habana 10400, Cuba; (E.M.M.-H.); (A.J.O.-G.)
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (V.M.); (M.K.); (G.B.)
| | - Grigory Bolotnikov
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (V.M.); (M.K.); (G.B.)
| | - Anselmo J. Otero-Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 and I, La Habana 10400, Cuba; (E.M.M.-H.); (A.J.O.-G.)
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany;
| | - Armando Rodriguez-Alfonso
- Core Facility for Functional Peptidomics (CFP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.-A.); (N.P.); (L.S.)
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Nico Preising
- Core Facility for Functional Peptidomics (CFP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.-A.); (N.P.); (L.S.)
| | - Ludger Ständker
- Core Facility for Functional Peptidomics (CFP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.-A.); (N.P.); (L.S.)
| | - Verena Vogel
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, TBC1 Forschung, Albert-Einstein-Allee 11, 89081 Ulm, Germany (B.S.)
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, TBC1 Forschung, Albert-Einstein-Allee 11, 89081 Ulm, Germany (B.S.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (V.M.); (M.K.); (G.B.)
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (V.M.); (M.K.); (G.B.)
| |
Collapse
|