1
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Kamble K, Kumar U, Aahra H, Yadav M, Bhola S, Gupta S. A novel ER stress regulator ARL6IP5 induces reticulophagy to ameliorate the prion burden. Autophagy 2024:1-21. [PMID: 39394963 DOI: 10.1080/15548627.2024.2410670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
Prion disease is a fatal and infectious neurodegenerative disorder caused by the trans-conformation conversion of PRNP/PrPC to PRNP/PrPSc. Accumulated PRNP/PrPSc-induced ER stress causes chronic unfolded protein response (UPR) activation, which is one of the fundamental steps in prion disease progression. However, the role of various ER-resident proteins in prion-induced ER stress is elusive. This study demonstrated that ARL6IP5 is compensatory upregulated in response to chronically activated UPR in the cellular prion disease model (RML-ScN2a). Furthermore, overexpression of ARL6IP5 overcomes ER stress by lowering the expression of chronically activated UPR pathway proteins. We discovered that ARL6IP5 induces reticulophagy to reduce the PRNP/PrPSc burden by releasing ER stress. Conversely, the knockdown of ARL6IP5 leads to inefficient macroautophagic/autophagic flux and elevated PRNP/PrPSc burden. Our study also uncovered that ARL6IP5-induced reticulophagy depends on Ca2+-mediated AMPK activation and can induce 3 MA-inhibited autophagic flux. The detailed mechanistic study revealed that ARL6IP5-induced reticulophagy involves interaction with soluble reticulophagy receptor CALCOCO1 and lysosomal marker LAMP1, leading to degradation in lysosomes. Here, we delineate the role of ARL6IP5 as a novel ER stress regulator and reticulophagy inducer that can effectively reduce the misfolded PRNP/PrPSc burden. Our research opens up a new avenue of selective autophagy in prion disease and represents a potential therapeutic target.Abbreviations: ARL6IP5: ADP ribosylation factor-like GTPase 6 interacting protein 5; AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; CALCOCO1: calcium binding and coiled-coil domain 1; CQ: chloroquine; DAPI: 4'6-diamino-2-phenylindole; ER: endoplasmic reticulum; ERPHS: reticulophagy/ER-phagy sites; KD: knockdown; KD-CON: knockdown control; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MβCD: methyl beta cyclodextrin; 3 MA: 3-methyladenine; OE: overexpression; OE-CON: empty vector control; PrDs: prion diseases; PRNP/PrPC: cellular prion protein (Kanno blood group); PRNP/PrPSc: infectious scrapie misfolded PRNP; Tm: tunicamycin; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Kajal Kamble
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| | - Ujjwal Kumar
- Structural Immunology Lab, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Harsh Aahra
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| | - Mohit Yadav
- Immuno-Metabolism Lab, National Institute of Immunology, New Delhi, India
| | - Sumnil Bhola
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| | - Sarika Gupta
- Molecular Sciences Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
3
|
He R, Tang J, Lai H, Zhang T, Du L, Wei S, Zhao P, Tang G, Liu J, Luo X. Deciphering the role of sphingolipid metabolism in the immune microenvironment and prognosis of esophageal cancer via single-cell sequencing and bulk data analysis. Discov Oncol 2024; 15:505. [PMID: 39333432 PMCID: PMC11436545 DOI: 10.1007/s12672-024-01379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) stands as a significant global health challenge, distinguished by its aggressive progression from the esophageal epithelium. Central to this malignancy is sphingolipid metabolism, a critical pathway that governs key cellular processes, including apoptosis and immune regulation, thereby influencing tumor behavior. The advent of single-cell and transcriptome sequencing technologies has catalyzed significant advancements in oncology research, offering unprecedented insights into the molecular underpinnings of cancer. METHODS We explored sphingolipid metabolism-related genes in ESCC using scRNA-seq data from GEO and transcriptome data from TCGA. We assessed 97 genes in epithelial cells with AUCell, UCell, and singscore algorithms, followed by bulk RNA-seq and differential analysis to identify prognosis-related genes. Immune infiltration and potential immunotherapeutic strategies were also investigated, and tumor gene mutations and drug treatment strategies were analyzed. RESULT Our study identified distinct gene expression patterns, highlighting ARSD, CTSA, DEGS1, and PPTQ's roles in later cellular stages. We identified seven independent prognostic genes and created a precise nomogram for prognosis. CONCLUSION This study integrates single-cell and transcriptomic data to provide a reliable prognostic model associated with sphingolipid metabolism and to inform immunotherapy and pharmacotherapy for ESCC at the genetic level. The findings have significant implications for precision therapy in esophageal cancer.
Collapse
Affiliation(s)
- Rongzhang He
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Jing Tang
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Haotian Lai
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tianchi Zhang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Linjuan Du
- Oncology department, Dazhou Central Hospital, Dazhou, China
| | - Siqi Wei
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Ping Zhao
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Guobin Tang
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China.
| | - Xiufang Luo
- Geriatric department, Dazhou Central Hospital, Dazhou, China.
| |
Collapse
|
4
|
Zhao X, Kang Z, Han R, Wang M, Wang Y, Sun X, Wang C, Zhou J, Cao L, Lu M. JWA binding to NCOA4 alleviates degeneration in dopaminergic neurons through suppression of ferritinophagy in Parkinson's disease. Redox Biol 2024; 73:103190. [PMID: 38744191 PMCID: PMC11109895 DOI: 10.1016/j.redox.2024.103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) poses a significant challenge in neurodegenerative disorders, characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The intricate mechanisms orchestrating DA neurodegeneration in PD are not fully understood, necessitating the exploration of innovative therapeutic approaches. Recent studies have implicated ferroptosis as a major contributor to the loss of DA neurons, revealing a complex interplay between iron accumulation and neurodegeneration. However, the sophisticated nature of this process challenges the conventional belief that mere iron removal could effectively prevent DA neuronal ferroptosis. Here, we report JWA, alternatively referred to as ARL6IP5, as a negative regulator of ferroptosis, capable of ameliorating DA neuronal loss in the context of PD. In this study, synchronized expression patterns of JWA and tyrosine hydroxylase (TH) in PD patients and mice were observed, underscoring the importance of JWA for DA neuronal survival. Screening of ferroptosis-related genes unraveled the engagement of iron metabolism in the JWA-dependent inhibition of DA neuronal ferroptosis. Genetic manipulation of JWA provided compelling evidence linking its neuroprotective effects to the attenuation of NCOA4-mediated ferritinophagy. Molecular docking, co-immunoprecipitation, and immunofluorescence studies confirmed that JWA mitigated DA neuronal ferroptosis by occupying the ferritin binding site of NCOA4. Moreover, the JWA-activating compound, JAC4, demonstrated promising neuroprotective effects in cellular and animal PD models by elevating JWA expression, offering a potential avenue for neuroprotection in PD. Collectively, our work establishes JWA as a novel regulator of ferritinophagy, presenting a promising therapeutic target for addressing DA neuronal ferroptosis in PD.
Collapse
Affiliation(s)
- Xinxin Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Zhengwei Kang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Ruixue Han
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Min Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Yueping Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Xin Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China.
| |
Collapse
|
5
|
Yu X, Li P, Li B, Yu F, Zhao W, Wang X, Wang Y, Gao H, Cheng M, Li X. d-Pinitol Improves Diabetic Sarcopenia by Regulation of the Gut Microbiome, Metabolome, and Proteome in STZ-Induced SAMP8 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14466-14478. [PMID: 38875577 DOI: 10.1021/acs.jafc.4c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
d-Pinitol (DP) is primarily found in Vigna sinensis, which has been shown to have hypoglycemic and protective effects on target organs. However, the mechanism of DP in treating diabetic sarcopenia (DS) is still unclear. To explore the underlying mechanism of DS and the protective targets of DP by high-throughput analysis of 16S rRNA gene, metabolome, and the proteome. Streptozotocin-induced SAMP8 mice were intragastrically administrated DP (150 mg/kg) for 8 weeks. Fecal 16S rRNA gene sequencing and gastrocnemius muscle metabolomic and proteomic analyses were completed to investigate the gut-muscle axis interactions. DP significantly alleviated the muscle atrophy in diabetic mice. Dysfunction of the gut microbiota was observed in the DS mice. DP significantly reduced the Parabacteroides, Akkermansia, and Enterobacteriaceae, while it increased Lachnospiraceae_NK4A136. Metabolome and proteome revealed that 261 metabolites and 626 proteins were significantly changed in the gastrocnemius muscle of diabetic mice. Among these, DP treatment restored 44 metabolites and 17 proteins to normal levels. Functional signaling pathways of DP-treated diabetic mice included nucleotide metabolism, β-alanine, histidine metabolism, ABC transporters, and the calcium signaling pathway. We systematically explored the molecular mechanism of DS and the protective effect of DP, providing new insights that may advance the treatment of sarcopenia.
Collapse
Affiliation(s)
- Xin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China
| | - Pei Li
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Baoying Li
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan 250101, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China
| | - Xue Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China
| | - Yajuan Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China
| | - Xiaoli Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Yang PL, Lai TS, Chou YH, Lai LC, Lin SL, Chen YM. DNA methylation in peripheral blood is associated with renal aging and renal function decline: a national community study. Clin Epigenetics 2024; 16:80. [PMID: 38879526 PMCID: PMC11180394 DOI: 10.1186/s13148-024-01694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Older patients are at risk for acute kidney injury and chronic kidney disease. Age-related increases in DNA methylation at CpG islands have been linked to aging-related diseases like cancer and cardiovascular disease, but the exact causal relationship between methylation in renal aging and other kidney diseases remains unclear. This study aimed to elucidate the methylation status of peripheral blood mononuclear cells (PBMCs) in the Asian population. Using human whole blood DNA methylation analysis from the Taiwan Biobank, we included participants with both whole blood genome-wide methylation data and follow-up data on serum creatinine. We investigated hyper- and hypomethylated genes in comparison of participants with higher and lower estimated glomerular filtration (eGFR) decline rate in overall cohort as well as in comparison of old and young participants in subgroup of participants with higher eGFR decline rate. Common genes and signaling pathways in both comparative analyses were identified. RESULTS Among 1587 participants in the analysis, 187 participants had higher eGFR decline rate. According to the comparison of methylation in participants with different eGFR declines and at different ages, respectively, we identified common hypermethylated genes, including DNMT3A and GGACT, as well as hypomethylated genes such as ARL6IP5, CYB5D1, BCL6, RPRD2, ZNF451, and MIAT in both participants with higher eGFR decline and those of older age. We observed associations between the methylation status of signaling pathways and aging as well as renal function decline. These pathways notably included autophagy, p38 mitogen-activated protein kinases, and sirtuins, which were associated with autophagy process and cytokine production. CONCLUSIONS Through methylation analysis of PBMCs, we identified genes and signaling pathways which could play crucial roles in the interplay of renal aging and renal function decline. These findings contribute to the development of novel biomarkers for identifying at-risk groups and even for therapeutic agent discovery.
Collapse
Affiliation(s)
- Po-Lung Yang
- Department of Geriatrics and Gerontology, National Taiwan University Hospital College of Medicine, National Taiwan University, Taipei, Taiwan
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
| | - Tai-Shuan Lai
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan.
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University, College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei, 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| |
Collapse
|
7
|
Ullah I, Uddin S, Zhao L, Wang X, Li H. Autophagy and UPS pathway contribute to nicotine-induced protection effect in Parkinson's disease. Exp Brain Res 2024:10.1007/s00221-023-06765-9. [PMID: 38430248 DOI: 10.1007/s00221-023-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/11/2023] [Indexed: 03/03/2024]
Abstract
The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Ricci C. Neurodegenerative Disease: From Molecular Basis to Therapy. Int J Mol Sci 2024; 25:967. [PMID: 38256040 PMCID: PMC10815646 DOI: 10.3390/ijms25020967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of age-related disorders characterised by the progressive degeneration or death of neurons in the central or peripheral nervous system [...].
Collapse
Affiliation(s)
- Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
9
|
Gomila Pelegri N, Stanczak AM, Bottomley AL, Cummins ML, Milthorpe BK, Gorrie CA, Padula MP, Santos J. Neural Marker Expression in Adipose-Derived Stem Cells Grown in PEG-Based 3D Matrix Is Enhanced in the Presence of B27 and CultureOne Supplements. Int J Mol Sci 2023; 24:16269. [PMID: 38003460 PMCID: PMC10671562 DOI: 10.3390/ijms242216269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) have incredible potential as an avenue to better understand and treat neurological disorders. While they have been successfully differentiated into neural stem cells and neurons, most such protocols involve 2D environments, which are not representative of in vivo physiology. In this study, human ADSCs were cultured in 1.1 kPa polyethylene-glycol 3D hydrogels for 10 days with B27, CultureOne (C1), and N2 neural supplements to examine the neural differentiation potential of ADSCs using both chemical and mechanical cues. Following treatment, cell viability, proliferation, morphology, and proteome changes were assessed. Results showed that cell viability was maintained during treatments, and while cells continued to proliferate over time, proliferation slowed down. Morphological changes between 3D untreated cells and treated cells were not observed. However, they were observed among 2D treatments, which exhibited cellular elongation and co-alignment. Proteome analysis showed changes consistent with early neural differentiation for B27 and C1 but not N2. No significant changes were detected using immunocytochemistry, potentially indicating a greater differentiation period was required. In conclusion, treatment of 3D-cultured ADSCs in PEG-based hydrogels with B27 and C1 further enhances neural marker expression, however, this was not observed using supplementation with N2.
Collapse
Affiliation(s)
- Neus Gomila Pelegri
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Aleksandra M. Stanczak
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Amy L. Bottomley
- Microbial Imaging Facility, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Max L. Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bruce K. Milthorpe
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| | - Catherine A. Gorrie
- Neural Injury Research Unit, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (A.M.S.); (M.P.P.)
| | - Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (N.G.P.); (B.K.M.)
| |
Collapse
|