1
|
Mitra R, Kumar S, Ayyannan SR. Identification of new small molecule allosteric SHP2 inhibitor through pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation studies, synthesis and in vitro evaluation. J Biomol Struct Dyn 2025; 43:1352-1371. [PMID: 38095360 DOI: 10.1080/07391102.2023.2291733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2025]
Abstract
Src homology-2 (SH2) domain-containing phosphatase-2 (SHP2) is the first identified protooncogene and is a promising target for developing small molecule inhibitors as cancer chemotherapeutic agents. Pharmacophore-based virtual screening (PBVS) is a pharmacoinformatics methodology that employs physicochemical knowhow of the chemical space into the dynamic environs of computational technology to extract virtual molecular hits that are precise and promising for a drug target. In the current study, PBVS has been applied on EnamineTM Advanced Collection of 551,907 molecules by using a pharmacophore model developed upon SHP099 by Molecular Operating Environment (MOE) software to identify potential small molecule allosteric SHP2 inhibitors. Obtained 37 hits were further filtered through DruLiTo software for drug-likeness and PAINS remover which yielded 35 hits. These were subjected to molecular docking studies against the tunnel allosteric site of SHP2 (PDB ID: 5EHR) to screen them according to their binding affinity for the enzyme. Top 5 molecules having highest binding affinity for 5EHR were passed through an ADMET prediction screening and the top 2 hits (ligands 111675 and 546656) with the most favourable ADMET profile were taken for post screening molecular docking and MD simulation studies. From the protein-ligand interaction pattern, conformational stability and energy parameters, ligand 111675 (SHP2 Ki = 0.118 µM) resulted as the most active molecule. Further, the synthesis and in vitro evaluation of the lead compound 111675 unveiled its potent inhibitory activity (IC50 = 0.878 ± 0.008 µM) against SHP2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, Uttar Pradesh, India
| | - Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Sun M, Han Z, Luo Z, Ge L, Zhang X, Feng K, Zhang G, Xu F, Zhou H, Han H, Jiang W. PTPN11 is a potential biomarker for type 2 diabetes mellitus complicated with colorectal cancer. Sci Rep 2024; 14:25155. [PMID: 39448762 PMCID: PMC11502912 DOI: 10.1038/s41598-024-75889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Epidemiological surveys have shown that the incidence of type 2 diabetes mellitus (T2DM) and malignancies is rapidly increasing worldwide and has become a major disease that threatens human life. In this study, we quantitatively analyzed the proteome of tumor tissues and adjacent normal tissues from six patients withT2DM combined with colorectal cancer (CRC) and eight non-diabetic CRC, focusing on the effect of T2DM on tumor tissues. We analyzed the functional enrichment of differentially expressed proteins (DEPs) using clusterProfiler in R and the expression level of protein tyrosine phosphatase non-receptor type 11 (PTPN11) and other key proteins in the TIMER and GEPIA2 databases. The HPA database was used to validate PTPN11 protein expression. The correlation between PTPN11 expression and clinicopathological features was analyzed by UALCAN database. The impact of PTPN11 on clinical prognosis was evaluated utilizing Kaplan-Meier Plotter. The correlation between PTPN11 expression and tumor-infiltrated immune cells was investigated via TIMER and TISIDB databases. Gene set enrichment analysis (GSEA) was performed to examined the pathway of PTPN11 enrichment in CRC using data from The Cancer Genome Atlas (TCGA) database. Furthermore, small interfering (si) RNA was used to knock down PTPN11 in CRC cell line SW480. Western blot analysis was used to detect PTPN11 expression in tissue samples or cells and the effect of PTPN11 knockdown on key proteins related to PI3K/AKT and cell cycle pathway in SW480 cells. Cell proliferation and wound healing assays were used to detect the effects of cell proliferation and migration after knockdown of PTPN11 or treatment with high glucose. We found that metabolic pathways such as oxidative phosphorylation, glycolysis/gluconeogenesis, and insulin secretion were significantly enriched in tumor tissues from diabetic patients compared to non-diabetic patients. In addition, PTPN11, a marker gene associated with T2DM and CRC, were mined in diabetic tumor tissues. PTPN11 showed high expression in diabetic tumor tissues compared to normal tissues. High PTPN11 expression predicted poor prognosis in CRC. PTPN11 expression was strongly associated with immune infiltrating cells in CRC. GSEA analysis revealed that PTPN11 was enriched in cancer-related pathways. Western blotting analysis indicated that PTPN11 knockdown reduced the protein levels of p-PI3K, p-AKT, CDK1 and CYCLIN D, without altering PI3K and AKT protein levels. Cell proliferation and wound healing data showed that PTPN11 and high glucose could increase the proliferation and migration ability. These findings showed that PTPN11 may be a potential key biomarker for CRC in patients with diabetes, which will provide new potential targets for future intervention of T2DM complicated with CRC.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Clinical Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Zhe Han
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China
| | - Zhimin Luo
- Department of Pharmacy, Dermatological Hospital of Shouguang City, Shouguang, Shandong, China
| | - Lijuan Ge
- Department of Medical Affairs, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Xiaolin Zhang
- Department of Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Keshu Feng
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China
| | - Guoshan Zhang
- Department of Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Fuyi Xu
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China
| | - Hongpan Zhou
- Department of Clinical Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Hailin Han
- Department of Clinical Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Wenguo Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China.
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China.
| |
Collapse
|
3
|
Yuan X, Yang L, Gao T, Gao J, Wang B, Liu C, Yuan W. YinChen WuLing powder attenuates non-alcoholic steatohepatitis through the inhibition of the SHP2/PI3K/NLRP3 pathway. Front Pharmacol 2024; 15:1423903. [PMID: 39101141 PMCID: PMC11294207 DOI: 10.3389/fphar.2024.1423903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Background YinChen WuLing Powder (YCWLP) has been recommended by consensus for the treatment of non-alcoholic steatohepatitis (NASH); nevertheless, its specific pharmacological mechanisms remain to be elucidated. This study aims to dissect the mechanisms underlying the therapeutic effects of YCWLP on NASH using a hybrid approach that encompasses network pharmacology, molecular docking, and in vitro experimental validation. Methods We compiled the chemical constituents of YCWLP from the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform (TCMSP), while potential targets were predicted using the SwissTargetPrediction database. To identify NASH-related candidate targets, comprehensive retrieval was carried out using five authoritative databases. Protein-Protein Interaction (PPI) networks of direct targets of YCWLP in NASH treatment were then constructed using the String database, and functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, were conducted through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Core targets were discerned using the Molecular Complex Detection (MCODE) and cytoHubba algorithms. Subsequently, molecular docking of key compounds to core targets was conducted using AutoDock software. Moreover, we established a free fatty acid-induced HepG2 cell model to simulate NASH in vitro, with YCWLP medicated serum intervention employed to corroborate the network pharmacology-derived hypotheses. Furthermore, a combination of enzyme-linked immunosorbent assay (ELISA), and Western blotting analyses was employed to investigate the lipid, hepatic enzyme, SHP2/PI3K/NLRP3 signaling pathway and associated cytokine levels. Results The network pharmacology analysis furnished a list of 54 compounds from YCWLP and 167 intersecting targets associated with NASH. Through analytic integration with multiple algorithms, PTPN11 (also known as SHP2) emerged as a core target of YCWLP in mitigating NASH. The in vitro experiments validated that 10% YCWLP medicated serum could remarkably attenuate levels of total cholesterol (TC, 1.25 vs. 3.32) and triglyceride (TG, 0.23 vs. 0.57) while ameliorating alanine aminotransferase (ALT, 7.79 vs. 14.78) and aspartate aminotransferase (AST, 4.64 vs. 8.68) leakage in NASH-afflicted cells. In addition, YCWLP significantly enhanced the phosphorylation of SHP2 (0.55 vs. 0.20) and downregulated the expression of molecules within the SHP2/PI3K/NLRP3 signaling axis, including p-PI3K (0.42 vs. 1.02), NLRP3 (0.47 vs. 0.93), along with downstream effectors-cleaved Caspase-1 (0.21 vs. 0.49), GSDMD-NT (0.24 vs. 0.71), mature interleukin-1β (IL-1β, 0.17 vs. 0.48), pro-IL-1β (0.49 vs. 0.89), mature interleukin-18 (IL-18, 0.15 vs. 0.36), and pro-IL-18 (0.48 vs. 0.95). Conclusion Our research reveals that YCWLP exerts therapeutic effects against NASH by inhibiting lipid accumulation and inflammation, which involves the attenuation of pyroptosis via the SHP2/PI3K/NLRP3 pathway.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tinting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jiawei Gao
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyu Wang
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengxiang Liu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Yuan
- Department of Hepatology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Qiu L, Gao Q, Tao A, Jiang J, Li C. Mometasone Furoate Inhibits the Progression of Head and Neck Squamous Cell Carcinoma via Regulating Protein Tyrosine Phosphatase Non-Receptor Type 11. Biomedicines 2023; 11:2597. [PMID: 37892971 PMCID: PMC10603855 DOI: 10.3390/biomedicines11102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Mometasone furoate (MF) is a kind of glucocorticoid with extensive pharmacological actions, including inhibiting tumor progression; however, the role of MF in head and neck squamous cell carcinoma (HNSCC) is still unclear. This study aimed to evaluate the inhibitory effect of MF against HNSCC and investigate its underlying mechanisms. Cell viability, colony formation, cell cycle and cell apoptosis were analyzed to explore the effect of MF on HNSCC cells. A xenograft study model was used to investigate the effect of MF on HNSCC in vivo. The core targets of MF for HNSCC were identified using network pharmacology analysis, TCGA database analysis and real-time PCR. Molecular docking was performed to determine the binding energy. Protein tyrosine phosphatase non-receptor type 11 (PTPN11)-overexpressing cells were constructed, and then, the cell viability and the expression levels of proliferation- and apoptosis-related proteins were detected after treatment with MF to explore the role of PTPN11 in the inhibitory effect of MF against HNSCC. After cells were treated with MF, cell viability and the number of colonies were decreased, the cell cycle was arrested and cell apoptosis was increased. The xenograft study results showed that MF could inhibit cell proliferation via promoting cell apoptosis in vivo. PTPN11 was shown to be the core target of MF against HNSCC via network pharmacology analysis, TCGA database analysis and real-time PCR. The molecular docking results revealed that PTPN11 exhibited the strongest ability to bind to MF. Finally, MF could attenuate the effects of increased cell viability and decreased cell apoptosis caused by PTPN11 overexpression, suggesting that MF can inhibit the progression of HNSCC by regulating PTPN11. MF targeted PTPN11, promoting cell cycle arrest and cell apoptosis, and consequently exerting effective anti-tumor activity.
Collapse
Affiliation(s)
- Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Qian Gao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Anqi Tao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|