1
|
Kim R, Sung JH. Recent Advances in Gut- and Gut-Organ-Axis-on-a-Chip Models. Adv Healthc Mater 2024; 13:e2302777. [PMID: 38243887 DOI: 10.1002/adhm.202302777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The human gut extracts nutrients from the diet while forming the largest barrier against the outer environment. In addition, the gut actively maintains homeostasis through intricate interactions with the gut microbes, the immune system, the enteric nervous system, and other organs. These interactions influence digestive health and, furthermore, play crucial roles in systemic health and disease. Given its primary role in absorbing and metabolizing orally administered drugs, there is significant interest in the development of preclinical in vitro model systems that can accurately emulate the intestine in vivo. A gut-on-a-chip system holds great potential as a testing and screening platform because of its ability to emulate the physiological aspects of in vivo tissues and expandability to incorporate and combine with other organs. This review aims to identify the key physiological features of the human gut that need to be incorporated to build more accurate preclinical models and highlights the recent progress in gut-on-a-chip systems and competing technologies toward building more physiologically relevant preclinical model systems. Furthermore, various efforts to construct multi-organ systems with the gut, called gut-organ-axis-on-a-chip models, are discussed. In vitro gut models with physiological relevance can provide valuable platforms for bridging the gap between preclinical and clinical studies.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
2
|
Moradian H, Gabriel T, Barrau M, Roblin X, Paul S. New methods to unveil host-microbe interaction mechanisms along the microbiota-gut-brain-axis. Gut Microbes 2024; 16:2351520. [PMID: 38717832 PMCID: PMC11086032 DOI: 10.1080/19490976.2024.2351520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.
Collapse
Affiliation(s)
- Habibullah Moradian
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
| | - Tristan Gabriel
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
| | - Mathilde Barrau
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Xavier Roblin
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
3
|
Kriaa A, Mariaule V, De Rudder C, Jablaoui A, Sokol H, Wilmes P, Maguin E, Rhimi M. From animal models to gut-on-chip: the challenging journey to capture inter-individual variability in chronic digestive disorders. Gut Microbes 2024; 16:2333434. [PMID: 38536705 PMCID: PMC10978023 DOI: 10.1080/19490976.2024.2333434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Chronic digestive disorders are of increasing incidence worldwide with expensive treatments and no available cure. Available therapeutic schemes mainly rely on symptom relief, with large degrees of variability in patients' response to such treatments, underlining the need for new therapeutic strategies. There are strong indications that the gut microbiota's contribution seems to be a key modulator of disease activity and patients' treatment responses. Hence, efforts have been devoted to understanding host-microbe interactions and the mechanisms underpinning such variability. Animal models, being the gold standard, provide valuable mechanistic insights into host-microbe interactions. However, they are not exempt from limitations prompting the development of alternative methods. Emerging microfluidic technologies and gut-on-chip models were shown to mirror the main features of gut physiology and disease state, reflect microbiota modification, and include functional readouts for studying host responses. In this commentary, we discuss the relevance of animal models in understanding host-microbe interactions and how gut-on-chip technology holds promises for addressing patient variability in responses to chronic digestive disease treatment.
Collapse
Affiliation(s)
- Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Vincent Mariaule
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Amin Jablaoui
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Sorbonne Université, Paris, France
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Moez Rhimi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
4
|
de Hoyos-Vega JM, Yu X, Gonzalez-Suarez AM, Chen S, Mercado-Perez A, Krueger E, Hernandez J, Fedyshyn Y, Druliner BR, Linden DR, Beyder A, Revzin A. Modeling gut neuro-epithelial connections in a novel microfluidic device. MICROSYSTEMS & NANOENGINEERING 2023; 9:144. [PMID: 38025883 PMCID: PMC10643697 DOI: 10.1038/s41378-023-00615-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
The intestinal lumen is filled with diverse chemical and physical stimuli. Intestinal epithelial cells sense these stimuli and signal to enteric neurons which coordinate a range of physiologic processes required for normal digestive tract function. Yet, the neuro-epithelial connections remain poorly resolved, in part because the tools for orchestrating interactions between these cellular compartments are lacking. We describe the development of a two-compartment microfluidic device for co-culturing enteric neurons with intestinal epithelial cells. The device contains epithelial and neuronal compartments connected by microgrooves. The epithelial compartment was designed for cell seeding via injection and confinement of intestinal epithelial cells derived from human intestinal organoids. We demonstrated that organoids planarized effectively and retained epithelial phenotype for over a week. In the second chamber we dissociated and cultured intestinal myenteric neurons including intrinsic primary afferent neurons (IPANs) from transgenic mice that expressed the fluorescent protein tdTomato. IPANs extended projections into microgrooves, surrounded and frequently made contacts with epithelial cells. The density and directionality of neuronal projections were enhanced by the presence of epithelial cells in the adjacent compartment. Our microfluidic device represents a platform that may, in the future, be used to dissect structure and function of neuro-epithelial connections in the gut and other organs (skin, lung, bladder, and others) in health and disease.
Collapse
Affiliation(s)
| | - Xi Yu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | | | - Sisi Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | | | - Eugene Krueger
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | - Jeric Hernandez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN USA
| | - Yaroslav Fedyshyn
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | - Brooke R. Druliner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN USA
| | - David R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN USA
| | - Arthur Beyder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| |
Collapse
|