1
|
Cheng C, Wang Y, Huo J, Zhang Y, Li R. SIRT6 knockdown alleviates keratinocyte hyperproliferation and inflammation in psoriasis via modulating acetylation of FOXO1. Int Immunopharmacol 2024; 146:113932. [PMID: 39733643 DOI: 10.1016/j.intimp.2024.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The Sirtuins family (SIRT) has been implicated in numerous diseases, including psoriasis.However, the precise role of SIRT6 in psoriasis remains unclear. The analysis of publicly available RNA-seq data from GEO profiles showed that SIRT6 expression levels was significantly elevated in the lesional skins from patients with psoriasis, as compared to the non-lesional skins or the skins from normal healthy donors. It was also confirmed that SIRT6 and Ki67 expression was consistently upregulated inpsoriatic lesional skin,mouse models of psoriasis established by imiquimod treatment, and HaCat cells treated with M5. When SIRT6 was knocked down or inhibited in M5-treated HaCat cells, there was a significant suppression ofM5-induced increases in inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. The upregulation of Ki67 expression and cell proliferation induced by M5 were also reduced. SIRT6 inhibitor also significantly reduced the epidermal thickness and Ki67 expression levels in mouse models of psoriasis. Mechanistically, SIRT6 knockdown or inhibition enhanced the nuclear translocation of forkhead box O 1 (FOXO1) by increasing its acetylation level. M5 treatment reduced the nuclear FOXO1 levels via enhancing the nuclear efflux of Foxo1. Knockdown or inhibition of SIRT6 resulted in an increase in nuclear FOXO1 levels, not through enhancing its nuclear influx, but possibly by impeding the nuclear efflux of Foxo1. In conclusion, the knockdown of the SIRT6 promoted the nuclear translocation of FOXO1 by upregulating its acetylation level, thereby inhibiting M5-induced hyperproliferation and inflammation of keratinocyte. Given the crucial role of SIRT6 in psoriasis, it may represent a promising target for the development of small-molecule inhibitors with therapeutic potential for psoriasis.
Collapse
Affiliation(s)
- Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Jia Huo
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yanfei Zhang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ruilian Li
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
2
|
Sun H, Li D, Wei C, Liu L, Xin Z, Gao H, Gao R. The relationship between SIRT1 and inflammation: a systematic review and meta-analysis. Front Immunol 2024; 15:1465849. [PMID: 39676853 PMCID: PMC11638041 DOI: 10.3389/fimmu.2024.1465849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Recent studies underscore the anti-inflammatory role of SIRT1; however, its levels during inflammatory states remain ambiguous. We synthesized relevant studies up to 20 March 2024 to evaluate the relationship between SIRT1 and inflammation, using data from three major databases. Employing a random-effects model, we analyzed both cross-sectional and longitudinal studies, calculating weighted mean differences (WMDs) for pooled effect sizes. Subgroup and sensitivity analyses, along with a risk of bias assessment, were also conducted. We reviewed 13 publications, encompassing 21 datasets and 2,028 participants. The meta-analysis indicated higher SIRT1 levels in inflammatory groups compared to control groups pre-adjustment (WMD, 3.18 ng/ml; 95% CI 2.30, 4.06 ng/ml; P<0.001; I²= 99.7%) and post-adjustment (WMD, 0.88 ng/ml; 95% CI 0.14, 1.62 ng/ml; P<0.001; I²= 99.5%). Notably, middle-aged patients with inflammation exhibited lower SIRT1 levels (WMD, -0.85 ng/ml; 95% CI -1.47, -0.22 ng/ml; P= 0.008; I²= 95.4%), while groups characterized by East Asian descent, plasma studies, autoimmune conditions, and musculoskeletal disorders showed higher levels. The findings suggest that inflammation generally upregulates SIRT1, potentially elucidating its role in immunobiological processes. However, the significant heterogeneity observed, partly due to the cross-sectional nature of some data, limits insights into the duration of disease progression, which remains highly variable.
Collapse
Affiliation(s)
- Haiyang Sun
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chaojie Wei
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhuoyuan Xin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Hang Gao
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Li F, Yu W, Zhou X, Hou J, Gao Y, Zhang J, Gao X. SIRT6 Inhibits Anoikis of Colorectal Cancer Cells by Down-Regulating NDRG1. Int J Mol Sci 2024; 25:5585. [PMID: 38891773 PMCID: PMC11171779 DOI: 10.3390/ijms25115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Anoikis, a form of apoptosis resulting from the loss of cell-extracellular matrix interaction, is a significant barrier to cancer cell metastasis. However, the epigenetic regulation of this process remains to be explored. Here, we demonstrate that the histone deacetylase sirtuin 6 (SIRT6) plays a pivotal role in conferring anoikis resistance to colorectal cancer (CRC) cells. The protein level of SIRT6 is negatively correlated with anoikis in CRC cells. The overexpression of SIRT6 decreases while the knockdown of SIRT6 increases detachment-induced anoikis. Mechanistically, SIRT6 inhibits the transcription of N-myc downstream-regulated gene 1 (NDRG1), a negative regulator of the AKT signaling pathway. We observed the up-regulation of SIRT6 in advanced-stage CRC samples. Together, our findings unveil a novel epigenetic program regulating the anoikis of CRC cells.
Collapse
Affiliation(s)
- Fengying Li
- Sir Run Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wentao Yu
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Xiaoling Zhou
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Jingyu Hou
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Yunyi Gao
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiangwei Gao
- Sir Run Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; (W.Y.); (X.Z.); (J.H.); (Y.G.)
| |
Collapse
|
4
|
Yuan X, Ou C, Li X, Zhuang Z, Chen Y. The skin circadian clock gene F3 as a potential marker for psoriasis severity and its bidirectional relationship with IL-17 signaling in keratinocytes. Int Immunopharmacol 2024; 132:111993. [PMID: 38565044 DOI: 10.1016/j.intimp.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Psoriasis is an immune-mediated skin disease where the IL-17 signaling pathway plays a crucial role in its development. Chronic circadian rhythm disorder in psoriasis pathogenesis is gaining more attention. The relationship between IL and 17 signaling pathway and skin clock genes remains poorly understood. METHODS GSE121212 with psoriatic lesion and healthy controls was used as the exploration cohort for searching analysis. Datasets GSE54456, GSE13355, GSE14905, GSE117239, GSE51440, and GSE137218 were applied to validation analysis. Single-cell RNA sequencing (scRNA-seq) dataset GSE173706 was used to explore the F3 expression and related pathway activities in single-cell levels. Through intersecting with high-expression DEGs, F3 was selected as the signature skin circadian gene in psoriasis for further investigation. Functional analyses, including correlation analyses, prediction of transcription factors, protein-protein interaction, and single gene GSEA to explore the potential roles of F3. ssGSEA algorithm was performed to uncover the immune-related characteristics of psoriasis. We further explored F3 expression in the specific cell population in scRNA-seq dataset, besides this, AUCell analysis was performed to explore the pathway activities and the results were further compared between the specific cell cluster. Immunohistochemistry experiment, RT-qPCR was used to validate the location and expression of F3, small interfering RNA (siRNA) transfection experiment in HaCaT, and transcriptome sequencing analysis were applied to explore the potential function of F3. RESULTS F3 was significantly down-regulated in psoriasis and interacted with IL-17 signaling pathway. Low expression of F3 could upregulate the receptor of JAK-STAT signaling, thereby promoting keratinocyte inflammation. CONCLUSION Our research revealed a bidirectional link between the skin circadian gene F3 and the IL-17 signaling pathway in psoriasis, suggesting that F3 may interact with the IL-17 pathway by activating JAK-STAT within keratinocytes and inducing abnormal intracellular inflammation.
Collapse
Affiliation(s)
- Xiuqing Yuan
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Caixin Ou
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xinhui Li
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Zhe Zhuang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongfeng Chen
- Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Huang WC, Liou CJ, Shen SC, Hu S, Chao JCJ, Huang CH, Wu SJ. Punicalagin from pomegranate ameliorates TNF-α/IFN-γ-induced inflammatory responses in HaCaT cells via regulation of SIRT1/STAT3 axis and Nrf2/HO-1 signaling pathway. Int Immunopharmacol 2024; 130:111665. [PMID: 38367463 DOI: 10.1016/j.intimp.2024.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Punicalagin (PUN) was isolated from the peel of pomegranate (Punica granatum L.), is a polyphenol with anti-inflammatory, hepatoprotective, and antioxidant activities. However, it remains unclear whether PUN alleviates the inflammation and anti-inflammatory mechanisms in pro-inflammatory cytokines-induced human keratinocyte HaCaT cells. Here, we investigated that tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture-stimulated HaCaT cells were treated with various concentrations of PUN, followed by analyzed the expression of inflammation-related mediators and evaluate anti-inflammatory-related pathways. Our results demonstrated that PUN ≤ 100 μM did not reduce HaCaT cell viability, and PUN ≥ 3 μM was sufficient to decrease interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 5 (CCL5), CCL17 and CCL20 concentrations. We found that PUN ≥ 10 μM and ≥ 3 μM significantly increased sirtuin 1 (SIRT1) expression and inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. PUN downregulated inflammation-related proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), enhanced nuclear factor erythroid-2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, PUN decreased intercellular adhesion molecule-1 (ICAM-1) expression and inhibited monocyte adhesion to inflamed HaCaT cells. PUN also suppressed inflammatory-related pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in TNF-α/IFN-γ- stimulated HaCat cells. Collectively, there is significant evidence that PUN has effective protective defenses against TNF-α/IFN-γ-induced skin inflammation by enhancing SIRT1 to mediate STAT3 and Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan, ROC; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan, ROC
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan, ROC; Department of Nursing, Division of Basic Medical Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan, ROC
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei 11677, Taiwan, ROC
| | - Sindy Hu
- Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC; Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, ROC
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chun-Hsun Huang
- Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC; Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, ROC
| | - Shu-Ju Wu
- Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, ROC; Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC.
| |
Collapse
|
6
|
Zhang Z, Cheng B, Du W, Zeng M, He K, Yin T, Shang S, Su T, Han D, Gan X, Wang Z, Liu M, Wang M, Liu J, Zheng Y. The Role of Nicotinamide Mononucleotide Supplementation in Psoriasis Treatment. Antioxidants (Basel) 2024; 13:186. [PMID: 38397784 PMCID: PMC10886094 DOI: 10.3390/antiox13020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Psoriasis is one of several chronic inflammatory skin diseases with a high rate of recurrence, and its pathogenesis remains unclear. Nicotinamide mononucleotide (NMN), as an important precursor of nicotinamide adenine dinucleotide (NAD+), has been reported to be a promising agent in treating various diseases, its positive effects including those induced via its anti-inflammatory and antioxidant properties. For this reason, we have aimed to explore the possible role of NMN in the treatment of psoriasis. Psoriasis models were constructed with imiquimod (IMQ) stimulation for 5 days in vivo and with M5 treatment in keratinocyte cell lines in vitro. NMN treatment during the IMQ application period markedly attenuated excess epidermal proliferation, splenomegaly, and inflammatory responses. According to GEO databases, Sirtuin1 (SIRT1) levels significantly decreased in psoriasis patients' lesion tissues; this was also the case in the IMQ-treated mice, while NMN treatment reversed the SIRT1 decline in the mouse model. Moreover, NMN supplementation also improved the prognoses of the mice after IMQ stimulation, compared to the untreated group with elevated SIRT1 levels. In HEKa and HaCaT cells, the co-culturing of NMN and M5 significantly decreased the expression levels of proinflammation factors, the phosphorylation of NF-κB, stimulator of interferon genes (STING) levels, and reactive oxygen species levels. NMN treatment also recovered the decrease in mitochondrial membrane potential and respiration ability and reduced mtDNA in the cytoplasm, leading to the inhibition of autoimmune inflammation. The knockdown of SIRT1 in vitro eliminated the protective and therapeutic effects of NMN against M5. To conclude, our results indicate that NMN protects against IMQ-induced psoriatic inflammation, oxidative stress, and mitochondrial dysfunction by activating the SIRT1 pathway.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Baochen Cheng
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Wenqian Du
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ke He
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Tingyi Yin
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Sen Shang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dan Han
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Xinyi Gan
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Ziyang Wang
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Meng Liu
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Min Wang
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Jiankang Liu
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yan Zheng
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| |
Collapse
|