1
|
Pampanella L, Petrocelli G, Forcellini F, Cruciani S, Ventura C, Abruzzo PM, Facchin F, Canaider S. Oxytocin, the Love Hormone, in Stem Cell Differentiation. Curr Issues Mol Biol 2024; 46:12012-12036. [PMID: 39590307 PMCID: PMC11592854 DOI: 10.3390/cimb46110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Oxytocin (OXT) is a neurohypophysial nonapeptide that exerts its effects mainly through the oxytocin receptor (OXTR). Several studies have pointed out the role of OXT in the modulation of stem cell (SC) fate and properties. SCs are undifferentiated cells characterized by a remarkable ability to self-renew and differentiate into various cell types of the body. In this review, we focused on the role of OXT in SC differentiation. Specifically, we summarize and discuss the scientific research examining the effects of OXT on mesodermal SC-derived lineages, including cardiac, myogenic, adipogenic, osteogenic, and chondrogenic differentiation. The available studies related to the effects of OXT on SC differentiation provide little insights about the molecular mechanism mediated by the OXT-OXTR pathway. Further research is needed to fully elucidate these pathways to effectively modulate SC differentiation and develop potential therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Forcellini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering, National Institute of Biostructures and Biosystems (NIBB), Via di Corticella 183, 40129 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
2
|
Wang T, Ye J, Zhang Y, Li J, Yang T, Wang Y, Jiang X, Yao Q. Role of oxytocin in bone. Front Endocrinol (Lausanne) 2024; 15:1450007. [PMID: 39290327 PMCID: PMC11405241 DOI: 10.3389/fendo.2024.1450007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Oxytocin (OT) is a posterior pituitary hormone that, in addition to its role in regulating childbirth and lactation, also exerts direct regulatory effects on the skeleton through peripheral OT and oxytocin receptor (OTR). Bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes, and adipocytes all express OT and OTR. OT upregulates RUNX2, BMP2, ALP, and OCN, thereby enhancing the activity of BMSCs and promoting their differentiation towards OB rather than adipocytes. OT also directly regulates OPG/RANKL to inhibit adipocyte generation, increase the expression of SOX9 and COMP, and enhance chondrocyte differentiation. OB can secrete OT, exerting influence on the surrounding environment through autocrine and paracrine mechanisms. OT directly increases OC formation through the NκB/MAP kinase signaling pathway, inhibits osteoclast proliferation by triggering cytoplasmic Ca2+ release and nitric oxide synthesis, and has a dual regulatory effect on OCs. Under the stimulation of estrogen, OB synthesizes OT, amplifying the biological effects of estrogen and OT. Mediated by estrogen, the OT/OTR forms a feedforward loop with OB. Apart from estrogen, OT also interacts with arginine vasopressin (AVP), prostaglandins (PGE2), leptin, and adiponectin to regulate bone metabolism. This review summarizes recent research on the regulation of bone metabolism by OT and OTR, aiming to provide insights into their clinical applications and further research.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianya Ye
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Orthopedic Surgery, Huaian Hospital of Huaian City, Huaian, China
| | - Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayi Li
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianxiao Yang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Jiang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Camerino C. The Pivotal Role of Oxytocin's Mechanism of Thermoregulation in Prader-Willi Syndrome, Schaaf-Yang Syndrome, and Autism Spectrum Disorder. Int J Mol Sci 2024; 25:2066. [PMID: 38396741 PMCID: PMC10888953 DOI: 10.3390/ijms25042066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Oxytocin (Oxt) regulates thermogenesis, and altered thermoregulation results in Prader-Willi syndrome (PWS), Schaaf-Yang syndrome (SYS), and Autism spectrum disorder (ASD). PWS is a genetic disorder caused by the deletion of the paternal allele of 15q11-q13, the maternal uniparental disomy of chromosome 15, or defects in the imprinting center of chromosome 15. PWS is characterized by hyperphagia, obesity, low skeletal muscle tone, and autism spectrum disorder (ASD). Oxt also increases muscle tonicity and decreases proteolysis while PWS infants are hypotonic and require assisted feeding in early infancy. This evidence inspired us to merge the results of almost 20 years of studies and formulate a new hypothesis according to which the disruption of Oxt's mechanism of thermoregulation manifests in PWS, SYS, and ASD through thermosensory abnormalities and skeletal muscle tone. This review will integrate the current literature with new updates on PWS, SYS, and ASD and the recent discoveries on Oxt's regulation of thermogenesis to advance the knowledge on these diseases.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|