1
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
2
|
Shen J, Lai Y, Wu Y, Lin X, Zhang C, Liu H. Ubiquitination in osteosarcoma: unveiling the impact on cell biology and therapeutic strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0231. [PMID: 39475222 PMCID: PMC11523277 DOI: 10.20892/j.issn.2095-3941.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024] Open
Abstract
Ubiquitination, a multifaceted post-translational modification, regulates protein function, degradation, and gene expression. The pivotal role of ubiquitination in the pathogenesis and progression of cancer, including colorectal, breast, and liver cancer, is well-established. Osteosarcoma, an aggressive bone tumor predominantly affecting adolescents, also exhibits dysregulation of the ubiquitination system, encompassing both ubiquitination and deubiquitination processes. This dysregulation is now recognized as a key driver of osteosarcoma development, progression, and chemoresistance. This review highlights recent progress in elucidating how ubiquitination modulates tumor behavior across signaling pathways. We then focus on the mechanisms by which ubiquitination influences osteosarcoma cell function. Finally, we discuss the potential for targeting the ubiquitin-proteasome system in osteosarcoma therapy. By unraveling the impact of ubiquitination on osteosarcoma cell physiology, we aim to facilitate the development of novel strategies for prognosis, staging, treatment, and overcoming chemoresistance.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian 351100, China
- Central Laboratory, Affiliated Hospital of Putian University, Putian 351100, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yanjiao Wu
- Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan 528000, China
| | - Xuan Lin
- Department of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Cheng Zhang
- Department of Trauma Center, Zhongda Hospital, Southeast University, Nanjing 210000, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Oblinger JL, Wang J, Wetherell GD, Agarwal G, Wilson TA, Benson NR, Fenger JM, Fuchs JR, Kinghorn AD, Chang LS. Anti-tumor effects of the eIF4A inhibitor didesmethylrocaglamide and its derivatives in human and canine osteosarcomas. Sci Rep 2024; 14:19349. [PMID: 39164287 PMCID: PMC11335891 DOI: 10.1038/s41598-024-69171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed higher levels of eIF4A1/2 compared with mesenchymal stem cells. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like (-)-DDR, (±)-DDR, and (-)-Roc, (±)-DDR-acetate increased γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both (-)-DDR- and (-)-Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.
Collapse
Affiliation(s)
- Janet L Oblinger
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Jack Wang
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Georgia D Wetherell
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Tyler A Wilson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Nicole R Benson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Joelle M Fenger
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Ethos Veterinary Health and Ethos Discovery (501c3), Woburn, MA, 01801, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, 43210, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Departments of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Departments of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Departments of Pathology, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Shao W, Feng Y, Huang J, Li T, Gao S, Yang Y, Li D, Yang Z, Yao Z. Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma. Open Life Sci 2024; 19:20220936. [PMID: 39119480 PMCID: PMC11306965 DOI: 10.1515/biol-2022-0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, and is characterized by high heterogeneity, high malignancy, easy metastasis, and poor prognosis. Recurrence, metastasis, and multidrug resistance are the main problems that limit the therapeutic effect and prognosis of OS. PI3K/AKT/mTOR signaling pathway is often abnormally activated in OS tissues and cells, which promotes the rapid development, metastasis, and drug sensitivity of OS. Emerging evidence has revealed new insights into tumorigenesis through the interaction between the PI3K/AKT/mTOR pathway and non-coding RNAs (ncRNAs). Therefore, we reviewed the interactions between the PI3K/AKT/mTOR pathway and ncRNAs and their implication in OS. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Weilin Shao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Jin Huang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tingyu Li
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shengguai Gao
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yihao Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| |
Collapse
|
5
|
Gao S, Chen Z, Wu X, Wang L, Bu T, Li L, Li X, Yun D, Sun F, Cheng CY. Perfluorooctane sulfonate-induced Sertoli cell injury through c-Jun N-terminal kinase: a study by RNA-Seq. Am J Physiol Cell Physiol 2024; 327:C291-C309. [PMID: 38826136 DOI: 10.1152/ajpcell.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of "forever chemicals" including perfluorooctane sulfonate (PFOS). These toxic chemicals do not break down in the environment or in our bodies. In the human body, PFOS and perfluoroctanoic acid (PFOA) have a half-life (T1/2) of about 4-5 yr so low daily consumption of these chemicals can accumulate in the human body to a harmful level over a long period. Although the use of PFOS in consumer products was banned in the United States in 2022/2023, this forever chemical remains detectable in our tap water and food products. Every American tested has a high level of PFAS in their blood (https://cleanwater.org/pfas-forever-chemicals). In this report, we used a Sertoli cell blood-testis barrier (BTB) model with primary Sertoli cells cultured in vitro with an established functional tight junction (TJ)-permeability barrier that mimicked the BTB in vivo. Treatment of Sertoli cells with PFOS was found to perturb the TJ-barrier, which was the result of cytoskeletal disruption across the cell cytoplasm, disrupting actin and microtubule polymerization. These changes thus affected the proper localization of BTB-associated proteins at the BTB. Using RNA-Seq transcriptome profiling, bioinformatics analysis, and pertinent biochemical and cell biology techniques, it was discovered that PFOS -induced Sertoli cell toxicity through the c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase, SAPK) and its phosphorylated/active form p-JNK signaling pathway. More importantly, KB-R7943 mesylate (KB), a JNK/p-JNK activator, was capable of blocking PFOS-induced Sertoli cell injury, supporting the notion that PFOS-induced cell injury can possibly be therapeutically managed.NEW & NOTEWORTHY PFOS induces Sertoli cell injury, including disruption of the 1) blood-testis barrier function and 2) cytoskeletal organization, which, in turn, impedes male reproductive function. These changes are mediated by JNK/p-JNK signaling pathway. However, the use of KB-R7943, a JNK/p-JNK activator was capable of blocking PFOS-induced Sertoli cell injury, supporting the possibility of therapeutically managing PFOS-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Xiaolong Wu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
6
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
7
|
Oblinger J, Wang J, Wetherell G, Agarwal G, Wilson T, Benson N, Fenger J, Fuchs J, Kinghorn AD, Chang L. Anti-tumor Effects of the eIF4A Inhibitor Didesmethylrocaglamide and Its Derivatives in Human and Canine Osteosarcomas. RESEARCH SQUARE 2024:rs.3.rs-4494024. [PMID: 38947012 PMCID: PMC11213195 DOI: 10.21203/rs.3.rs-4494024/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed high levels of eIF4A1/2, particularly eIF4A2. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like DDR and Roc, DDR-acetate increased the γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both DDR- and Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.
Collapse
Affiliation(s)
- Janet Oblinger
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| | - Jack Wang
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| | | | | | | | | | | | | | | | - Long Chang
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| |
Collapse
|
8
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
9
|
Ganesan K, Xu C, Xie C, Sui Y, Zheng C, Gao F, Chen J. Cryoprotective isoliquiritigenin-zein phosphatidylcholine nanoparticles inhibits breast cancer-bone metastasis by targeting JAK-STAT signaling pathways. Chem Biol Interact 2024; 396:111037. [PMID: 38719172 DOI: 10.1016/j.cbi.2024.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Breast cancer (BC) is the most common cancer in women and is known for its tendency to spread to the bones, causing significant health issues and mortality. In this study, we aimed to investigate whether cryoprotective isoliquiritigenin-zein phosphatidylcholine nanoparticles (ISL@ZLH NPs) could inhibit BC-induced bone destruction and tumor metastasis in both in vitro and animal models. To evaluate the potential of ISL@ZLH NPs, we conducted various experiments. First, we assessed cell viability, colony formation, transwell migration, and wound healing assays to determine the impact of ISL@ZLH NPs on BC cell behavior. Western blotting, TRAP staining and ALP activity were performed to examine the effects of ISL@ZLH NPs on osteoclast formation induced by MDA-MB-231 cell-conditioned medium and RANKL treated RAW 264.7 cells. Furthermore, we assessed the therapeutic impact of ISL@ZLH NPs on tumor-induced bone destruction using a mouse model of BC bone metastasis. Treatment with ISL@ZLH NPs effectively suppressed BC cell proliferation, colony formation, and motility, reducing their ability to metastasize. ISL@ZLH NPs significantly inhibited osteoclast formation and the expression of factors associated with bone destruction in BC cells. Additionally, ISL@ZLH NPs suppressed JAK-STAT signaling in RAW264.7 cells. In the BCBM mouse model, ISL@ZLH NPs led to a significant reduction in osteolytic bone lesions compared to the control group. Histological analysis and TRAP staining confirmed that ISL@ZLH NPs preserved the integrity of bone structure, preventing invasive metastasis by confining tumor growth to the bone marrow cavity. Furthermore, ISL@ZLH NPs effectively suppressed tumor-induced osteoclastogenesis, a key process in BC-related bone destruction. Our findings demonstrate that ISL@ZLH NPs have the potential to inhibit BC-induced bone destruction and tumor metastasis by targeting JAK-STAT signaling pathways and suppressing tumor-induced osteoclastogenesis. These results underscore the therapeutic promise of ISL@ZLH NPs in managing BC metastasis to the bones.
Collapse
Affiliation(s)
- Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cong Xu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chunguang Xie
- Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Sui
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chuan Zheng
- Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Gao
- Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Fang L, Wang B, Yang Z, Zhao T, Hao W. PNO1 promotes the progression of osteosarcoma via TGF-β and YAP/TAZ pathway. Sci Rep 2023; 13:21827. [PMID: 38071381 PMCID: PMC10710495 DOI: 10.1038/s41598-023-49295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to explore the potential role and mechanisms of the partner of NOB1 homolog (PNO1) in osteosarcoma. The expression of PNO1 in tumor and adjacent tissue samples was examined using western blotting. Lentiviral transfection was used to establish sh-Ctrl and sh-PNO1 osteosarcoma cell lines. MTT assay, Celigo cell cytometer count, and cell colony formation assay were used to investigate the proliferation of osteosarcoma cells in vitro, whereas xenotransplantation assay was performed for in vivo experiments. Wound-healing and Transwell assays were chosen to verify the migration and invasion of osteosarcoma cells. Flow cytometry assay and caspase-3/7 activity analysis were adopted for the analysis of cell apoptosis and cell cycle. Finally, transcriptome sequencing and bioinformatics analysis were adopted to explore the acting mechanisms. The expression of PNO1 was higher in osteosarcoma tissues than that in adjacent tissues. Down-regulation of PNO1 inhibited the proliferation, migration, and invasion, and induced cell apoptosis and cell cycle arrest of osteosarcoma cells. Furthermore, according to transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that PNO1 might affect the progression of osteosarcoma via TGF-β and YAP/TAZ signaling pathways. PNO1 could be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Long Fang
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Baolong Wang
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Zengkun Yang
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Tingbao Zhao
- Department of Bone and Soft Tissue Tumors, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China
| | - Wei Hao
- Department of Orthopedics and Traumatology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250000, China.
| |
Collapse
|
11
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
12
|
Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the Impact of Tumor Microenvironment in Osteosarcoma Progression and Metastasis. Cancers (Basel) 2023; 15:5108. [PMID: 37894474 PMCID: PMC10605493 DOI: 10.3390/cancers15205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy in children and adolescents. Despite advancements in multimodal treatment strategies, the prognosis for patients with metastatic or recurrent disease has not improved significantly in the last four decades. OS is a highly heterogeneous tumor; its genetic background and the mechanism of oncogenesis are not well defined. Unfortunately, no effective molecular targeted therapy is currently available for this disease. Understanding osteosarcoma's tumor microenvironment (TME) has recently gained much interest among scientists hoping to provide valuable insights into tumor heterogeneity, progression, metastasis, and the identification of novel therapeutic avenues. Here, we review the current understanding of the TME of OS, including different cellular and noncellular components, their crosstalk with OS tumor cells, and their involvement in tumor progression and metastasis. We also highlight past/current clinical trials targeting the TME of OS for effective therapies and potential future therapeutic strategies with negligible adverse effects.
Collapse
Affiliation(s)
| | | | | | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.); (D.I.P.); (T.N.S.)
| |
Collapse
|