1
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Examination of the PET in vivo generator 134Ce as a theranostic match for 225Ac. Eur J Nucl Med Mol Imaging 2024; 51:4015-4025. [PMID: 38940841 DOI: 10.1007/s00259-024-06811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations that are not possible with 225Ac. In this work, 225Ac- and 134Ce-labelled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. METHODS The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labelled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. RESULTS In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. CONCLUSION When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Edwin C Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Lunj S, Smith TAD, Reeves KJ, Currell F, Honeychurch J, Hoskin P, Choudhury A. Immune effects of α and β radionuclides in metastatic prostate cancer. Nat Rev Urol 2024; 21:651-661. [PMID: 39192074 DOI: 10.1038/s41585-024-00924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
External beam radiotherapy is used for radical treatment of organ-confined prostate cancer and to treat lesions in metastatic disease whereas molecular radiotherapy with labelled prostate-specific membrane antigen ligands and radium-223 (223Ra) is indicated for metastatic prostate cancer and has demonstrated substantial improvements in symptom control and overall survival compared with standard-of-care treatment. Prostate cancer is considered an immunologically cold tumour, so limited studies investigating the treatment-induced effects on the immune response have been completed. However, emerging data support the idea that radiotherapy induces an immune response in prostate cancer, but whether the response is an antitumour or pro-tumour response is dependent on the radiotherapy regime and is also cell-line dependent. In vitro data demonstrate that single-dose radiotherapy regimes induce a greater immune-suppressive profile than fractionated regimes; less is known about the immune response induced by molecular radiotherapy agents, but evidence suggests that these agents might induce an immune-suppressive systemic immune response, indicated by increased expression of inhibitory checkpoint molecules such as programmed cell death 1 ligand 1 and 2, and that these changes could be associated with clinical response. Different radiotherapy modalities can induce distinct immune profiles, which can either activate or suppress immune-mediated tumour killing and the current preclinical models used for prostate cancer research are not yet optimal for studying the complexity of the radiotherapy-induced immune response.
Collapse
Affiliation(s)
- Sapna Lunj
- Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, UK.
| | - Tim Andrew Davies Smith
- Nuclear Futures Institute, School of Computer Science and Engineering, Bangor University, Bangor, UK
| | - Kimberley Jayne Reeves
- Division of Cancer Sciences, Paterson Building, University of Manchester, Manchester, UK
| | - Fred Currell
- The Dalton Cumbria Facility and the Department of Chemistry, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Division of Cancer Sciences, Paterson Building, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Peter Hoskin
- Division of Cancer Sciences, Paterson Building, University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
3
|
Bogsrud TV, Engelsen O, Lu TTT, Stensvold A, Johnson DR, Burkett BJ, Kendi AT, Pandey MK, Sundset R, Durski JM. All that glitters is not gold: high uptake on PSMA PET in non-prostate cancers does not mean that treatment with [ 177Lu]Lu-PSMA-radioligand will be successful. EJNMMI Res 2024; 14:95. [PMID: 39404984 PMCID: PMC11480294 DOI: 10.1186/s13550-024-01156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The main objective is to discuss why treatment of non-prostate cancers with [177Lu]Lu-PSMA-radioligand achieved only low tumor dose in most published cases, despite high uptake on PSMA PET. We use a patient with renal cell carcinoma as an illustrative example. Furthermore, we discuss how the problem with early washout and low tumor dose might be overcome by using a radionuclide with shorter half-life, matching the target binding residence time. CASE PRESENTATION [68Ga]Ga-PSMA-11 PET/CT of a 56-year old man with metastatic renal cell carcinoma showed high lesion uptake. One dose of 6.9 GBq [177Lu]Lu-PSMA-I&T was administrated. Post-therapy dosimetry was performed with SPECT/CT and whole-body planar imaging after 5, 24 and 48 h. Doses to target lesions were only 0.2-0.5 Gy. No treatment effect was achieved. CONCLUSION Rapid tumor washout of [177Lu]Lu-PSMA-I&T and low tumor dose despite high uptake of [68Ga]Ga-PSMA-11 are most likely caused by localization of PSMA-receptors on neovasculature rather than on the tumor cells, and unlike in prostate cancer cells, the PSMA-RL / PSMA-receptor complex is not internalized. To overcome the problem with early washout, the use of a radionuclide with shorter half-life matching the target binding residence time will be needed.
Collapse
Affiliation(s)
- Trond Velde Bogsrud
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway.
- Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark.
| | - Ola Engelsen
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway
| | - Thuy Thu Thi Lu
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway
| | | | - Derek R Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Brian J Burkett
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ayse Tuba Kendi
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mukesh K Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Rune Sundset
- PET-Imaging Center, University Hospital of North Norway, Tromso, Norway
- UiT The Arctic University of Norway, Tromso, Norway
| | - Jolanta M Durski
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Vanermen M, Ligeour M, Oliveira MC, Gestin JF, Elvas F, Navarro L, Guérard F. Astatine-211 radiolabelling chemistry: from basics to advanced biological applications. EJNMMI Radiopharm Chem 2024; 9:69. [PMID: 39365487 PMCID: PMC11452365 DOI: 10.1186/s41181-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND 211At-radiopharmaceuticals are currently the subject of growing studies for targeted alpha therapy of cancers, which leads to the widening of the scope of the targeting vectors, from small molecules to peptides and proteins. This has prompted, during the past decade, to a renewed interest in developing novel 211At-labelling approaches and novel prosthetic groups to address the diverse scenarios and to reach improved efficiency and robustness of procedures as well as an appropriate in vivo stability of the label. MAIN BODY Translated from the well-known (radio)iodine chemistry, the long preferred electrophilic astatodemetallation using trialkylaryltin precursors is now complemented by new approaches using electrophilic or nucleophilic At. Alternatives to the astatoaryl moiety have been proposed to improve labelling stability, and the range of prosthetic groups available to label proteins has expanded. CONCLUSION In this report, we cover the evolution of radiolabelling chemistry, from the initial strategies developed in the late 1970's to the most recent findings.
Collapse
Affiliation(s)
- Maarten Vanermen
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Mathilde Ligeour
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Maria-Cristina Oliveira
- Departamento de Engenharia e Ciências Nucleares and Centro de Ciências e Tecnologias Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | | | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | | | - François Guérard
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
6
|
Mallak N, Yilmaz B, Meyer C, Winters C, Mench A, Jha AK, Prasad V, Mittra E. Theranostics in Neuroendocrine Tumors: Updates and Emerging Technologies. Curr Probl Cancer 2024; 52:101129. [PMID: 39232443 DOI: 10.1016/j.currproblcancer.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/22/2024] [Indexed: 09/06/2024]
Abstract
Advancements in somatostatin receptor (SSTR) targeted imaging and treatment of well-differentiated neuroendocrine tumors (NETs) have revolutionized the management of these tumors. This comprehensive review delves into the current practice, discussing the use of the various FDA-approved SSTR-agonist PET tracers and the predictive imaging biomarkers, and elaborating on Lu177-DOTATATE peptide receptor radionuclide therapy (PRRT) including the evolving areas of post-therapy imaging practices, PRRT retreatment, and the potential role of dosimetry in optimizing patient treatments. The future directions sections highlight ongoing research on investigational PET imaging radiotracers, future prospects in alpha particle therapy, and combination therapy strategies.
Collapse
Affiliation(s)
- Nadine Mallak
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Burcak Yilmaz
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Catherine Meyer
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Celeste Winters
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Anna Mench
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, US
| | - Vikas Prasad
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, US
| | - Erik Mittra
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA.
| |
Collapse
|
7
|
Ghosh S, Banerjee D, Guleria A, Chakravarty R. Production, purification and formulation of nanoradiopharmaceutical with 211At: An emerging candidate for targeted alpha therapy. Nucl Med Biol 2024; 138-139:108947. [PMID: 39216162 DOI: 10.1016/j.nucmedbio.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Astatine-211 has attained significant interest in the recent times as a promising radioisotope for targeted alpha therapy (TAT) of cancer. In this study, we report the production of 211At via 209Bi (α, 2n) 211At reaction in a cyclotron and development of a facile radiochemical separation procedure to isolate 211At for formulation of nanoradiopharmaceuticals. METHODS Natural bismuth oxide target in pelletized form wrapped in Al foil was irradiated with 30 MeV α-beam in an AVF cyclotron. The irradiated target was dissolved in 2 M HNO3 followed by selective precipitation of Bi as Bi(OH)3 under alkaline condition. The radiochemically separated 211At was used for labeling cyclic RGD peptide conjugated gold nanoparticles (Au-RGD NPs) by surface adsorption. The radiochemical stability of 211At-Au-RGD NPs was evaluated in phosphate buffered saline (PBS) and human serum media. RESULTS The batch yield of 211At at the end of irradiation was ∼6 MBq.μA-1.h-1. After radiochemical separation, ∼80 % of 211At could be retrieved with >99.9 % radionuclidic purity. Au-RGD NPs (particle size 8.4±0.8 nm) could be labeled with 211At with >99 % radiolabeling yield. The radiolabeled nanoparticles retained their integrity in PBS and human serum media over a period of 21 h. CONCLUSIONS The present strategy simplifies 211At production in terms of purification and would increase affordable access to this radioisotope for TAT of cancer.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Debashis Banerjee
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiochemistry Division (BARC), Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata 700064, India
| | - Apurav Guleria
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
8
|
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals (Basel) 2024; 17:1031. [PMID: 39204136 PMCID: PMC11359268 DOI: 10.3390/ph17081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.
Collapse
Affiliation(s)
- Ruth Christine Winter
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mariam Amghar
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Anja S. Wacker
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Gábor Bakos
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Harun Taş
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - James M. Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| |
Collapse
|
9
|
Simms ME, Li Z, Sibley MM, Ivanov AS, Lara CM, Johnstone TC, Kertesz V, Fears A, White FD, Thorek DLJ, Thiele NA. PYTA: a universal chelator for advancing the theranostic palette of nuclear medicine. Chem Sci 2024; 15:11279-11286. [PMID: 39055008 PMCID: PMC11268510 DOI: 10.1039/d3sc06854d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
To clinically advance the growing arsenal of radiometals available to image and treat cancer, chelators with versatile binding properties are needed. Herein, we evaluated the ability of the py2[18]dieneN6 macrocycle PYTA to interchangeably bind and stabilize 225Ac3+, [177Lu]Lu3+, [111In]In3+ and [44Sc]Sc3+, a chemically diverse set of radionuclides that can be used complementarily for targeted alpha therapy, beta therapy, single-photon emission computed tomography (SPECT) imaging, and positron emission tomography (PET) imaging, respectively. Through NMR spectroscopy and X-ray diffraction, we show that PYTA possesses an unusual degree of flexibility for a macrocyclic chelator, undergoing dramatic conformational changes that enable it to optimally satisfy the disparate coordination properties of each metal ion. Subsequent radiolabeling studies revealed that PYTA quantitatively binds all 4 radiometals at room temperature in just minutes at pH 6. Furthermore, these complexes were found to be stable in human serum over 2 half-lives. These results surpass those obtained for 2 state-of-the-art chelators for nuclear medicine, DOTA and macropa. The stability of 225Ac-PYTA and [44Sc]Sc-PYTA, the complexes having the most disparity with respect to metal-ion size, was further probed in mice. The resulting PET images (44Sc) and ex vivo biodistribution profiles (44Sc and 225Ac) of the PYTA complexes differed dramatically from those of unchelated [44Sc]Sc3+ and 225Ac3+. These differences provide evidence that PYTA retains this size-divergent pair of radionuclides in vivo. Collectively, these studies establish PYTA as a new workhorse chelator for nuclear medicine and warrant its further investigation in targeted constructs.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhiyao Li
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame Notre Dame IN 46556 USA
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz Santa Cruz CA 95064 USA
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Amanda Fears
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Daniel L J Thorek
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis St. Louis MO 63110 USA
- Oncologic Imaging Program, Siteman Cancer Center, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
10
|
Nair RR, Prasad A, Bhatavdekar O, Sarkar A, Gabrielson KL, Sofou S. Combined, yet separate: cocktails of carriers (not drugs) for actinium-225 α-particle therapy of solid tumors expressing moderate-to-low levels of targetable markers. Eur J Nucl Med Mol Imaging 2024; 51:2649-2662. [PMID: 38641714 DOI: 10.1007/s00259-024-06710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Abstract
Alpha-particle radionuclide-antibody conjugates are being clinically evaluated against solid tumors even when they moderately express the targeted markers. At this limit of lower tumor-absorbed doses, to maintain efficacy, the few(er) intratumorally delivered alpha-particles need to traverse/hit as many different cancer cells as possible. We complement antibody-radioconjugate therapies with a separate nanocarrier delivering a fraction of the same total injected radioactivity to tumor regions geographically different than those affected by targeting antibodies; these carrier-cocktails collectively distribute the alpha-particle emitters better. METHODS The efficacy of actinium-225 delivered by our carrier-cocktails was assessed in vitro and on mice with orthotopic MDA-MB-436 and/or MDA-MB-231 triple-negative breast cancers and/or an ectopic BxPC3 pancreatic cancer. Cells/tumors were chosen to express low-to-moderate levels of HER1, as model antibody-targeted marker. RESULTS Independent of cell line, antibody-radioconjugates were most lethal on cell monolayers. On spheroids, with radii greater than alpha-particles' range, carrier-cocktails improved killing efficacy (p < 0.0500). Treatment with carrier-cocktails decreased the MDA-MB-436 and MDA-MB-231 orthotopic tumor volumes by 73.7% and 72.1%, respectively, relative to treatment with antibody-radioconjugates alone, at same total injected radioactivity; these carrier-cocktails completely eliminated formation of spontaneous metastases vs. 50% and 25% elimination in mice treated with antibody-radioconjugates alone. In BxPC3 tumor-bearing mice, carrier-cocktails increased the median survival to 25-26 days (in male-female animals) vs. 20-21 days of mice treated with antibody-radioconjugates alone (vs. 17 days for non-treated animals). Survival with carrier-cocktail radiotherapy was further prolonged by pre-injecting low-dose, standard-of-care, gemcitabine (p = 0.0390). CONCLUSION Tumor-agnostic carrier-cocktails significantly enhance the therapeutic efficacy of existing alpha-particle radionuclide-antibody treatments.
Collapse
Affiliation(s)
- Rajiv Ranjit Nair
- Chemical and Biomolecular Engineering (ChemBE), Institute for NanoBioTechnology (INBT), Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Aprameya Prasad
- Chemical and Biomolecular Engineering (ChemBE), Institute for NanoBioTechnology (INBT), Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Omkar Bhatavdekar
- Chemical and Biomolecular Engineering (ChemBE), Institute for NanoBioTechnology (INBT), Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Aira Sarkar
- Chemical and Biomolecular Engineering (ChemBE), Institute for NanoBioTechnology (INBT), Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Kathleen L Gabrielson
- Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Stavroula Sofou
- Chemical and Biomolecular Engineering (ChemBE), Institute for NanoBioTechnology (INBT), Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Cancer Invasion & Metastasis Program, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Yechiel Y, Chicheportiche A, Keidar Z, Ben-Haim S. Prostate Cancer Radioligand Therapy: Beta-labeled Radiopharmaceuticals. PET Clin 2024; 19:389-399. [PMID: 38679550 DOI: 10.1016/j.cpet.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Prostate cancer is the most common malignancy in men worldwide, with an estimated 174,650 new cases per year in the United States, and the second cancer-related cause of death, after lung cancer, with 31,620 deaths per year. While the 5 year survival rate for prostate cancer in patients without metastatic spread is nearly 100%, those with distant metastases have 5 year survival rates of approximately 30%. Initial diagnosis and assessment are based on PSA levels, Gleason score (derived from prostate biopsy), and advanced imaging modalities, including prostate MR imaging and PSMA-PET/computed tomography in patients with high-risk features.
Collapse
Affiliation(s)
- Yaniv Yechiel
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel.
| | | | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; Technion - Israel Institute of Technology, Haifa, Israel
| | - Simona Ben-Haim
- Department of Biophysics and Nuclear Medicine, Hadassah Medical Organization, Jerusalem, Israel; Hebrew University of Jerusalem, Jerusalem, Israel; University College London, London, UK
| |
Collapse
|
12
|
Senior M. Precision radiation opens a new window on cancer therapy. Nat Biotechnol 2024; 42:1003-1008. [PMID: 38866995 DOI: 10.1038/s41587-024-02295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
13
|
Muniz M, Loprinzi CL, Orme JJ, Koch RM, Mahmoud AM, Kase AM, Riaz IB, Andrews JR, Thorpe MP, Johnson GB, Kendi AT, Kwon ED, Nauseef JT, Morgans AK, Sartor O, Childs DS. Salivary toxicity from PSMA-targeted radiopharmaceuticals: What we have learned and where we are going. Cancer Treat Rev 2024; 127:102748. [PMID: 38703593 PMCID: PMC11160931 DOI: 10.1016/j.ctrv.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Clinical trials of prostate-specific membrane antigen (PSMA) targeted radiopharmaceuticals have shown encouraging results. Some agents, like lutetium-177 [177Lu]Lu-PSMA-617 ([177Lu]Lu-PSMA-617), are already approved for late line treatment of metastatic castration-resistant prostate cancer (mCRPC). Projections are for continued growth of this treatment modality; [177Lu]Lu-PSMA-617 is being studied both in earlier stages of disease and in combination with other anti-cancer therapies. Further, the drug development pipeline is deep with variations of PSMA-targeting radionuclides, including higher energy alpha particles conjugated to PSMA-honing vectors. It is safe to assume that an increasing number of patients will be exposed to PSMA-targeted radiopharmaceuticals during the course of their cancer treatment. In this setting, it is important to better understand and mitigate the most commonly encountered toxicities. One particularly vexing side effect is xerostomia. In this review, we discuss the scope of the problem, inventories to better characterize and monitor this troublesome side effect, and approaches to preserve salivary function and effectively palliate symptoms. This article aims to serve as a useful reference for prescribers of PSMA-targeted radiopharmaceuticals, while also commenting on areas of missing data and opportunities for future research.
Collapse
Affiliation(s)
- Miguel Muniz
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| | | | - Jacob J Orme
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| | - Regina M Koch
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, US.
| | | | - Adam M Kase
- Department of Medical Oncology, Mayo Clinic, Jacksonville FL, US.
| | - Irbaz B Riaz
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, US.
| | - Jack R Andrews
- Department of Urology, Mayo Clinic Arizona, Phoenix, AZ, US.
| | - Matthew P Thorpe
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Geoffrey B Johnson
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US; Department of Immunology, Mayo Clinic, Rochester, MN, US.
| | - Ayse T Kendi
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, MN, US.
| | - Jones T Nauseef
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, US.
| | - Alicia K Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, US.
| | - Oliver Sartor
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US; Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Daniel S Childs
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| |
Collapse
|
14
|
Kleynhans J, Ebenhan T, Cleeren F, Sathekge MM. Can current preclinical strategies for radiopharmaceutical development meet the needs of targeted alpha therapy? Eur J Nucl Med Mol Imaging 2024; 51:1965-1980. [PMID: 38676735 PMCID: PMC11139742 DOI: 10.1007/s00259-024-06719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Preclinical studies are essential for effectively evaluating TAT radiopharmaceuticals. Given the current suboptimal supply chain of these radionuclides, animal studies must be refined to produce the most translatable TAT agents with the greatest clinical potential. Vector design is pivotal, emphasizing harmonious physical and biological characteristics among the vector, target, and radionuclide. The scarcity of alpha-emitting radionuclides remains a significant consideration. Actinium-225 and lead-212 appear as the most readily available radionuclides at this stage. Available animal models for researchers encompass xenografts, allografts, and PDX (patient-derived xenograft) models. Emerging strategies for imaging alpha-emitters are also briefly explored. Ultimately, preclinical research must address two critical aspects: (1) offering valuable insights into balancing safety and efficacy, and (2) providing guidance on the optimal dosing of the TAT agent.
Collapse
Affiliation(s)
- Janke Kleynhans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, and Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa.
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, 0001, South Africa.
| |
Collapse
|
15
|
Ballisat L, De Sio C, Beck L, Guatelli S, Sakata D, Shi Y, Duan J, Velthuis J, Rosenfeld A. Dose and DNA damage modelling of diffusing alpha-emitters radiation therapy using Geant4. Phys Med 2024; 121:103367. [PMID: 38701625 DOI: 10.1016/j.ejmp.2024.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
PURPOSE Diffusing alpha-emitters radiation therapy (DaRT) is a brachytherapy technique using α-particles to treat solid tumours. The high linear energy transfer (LET) and short range of α-particles make them good candidates for the targeted treatment of cancer. Treatment planning of DaRT requires a good understanding of the dose from α-particles and the other particles released in the 224Ra decay chain. METHODS The Geant4 Monte Carlo toolkit has been used to simulate a DaRT seed to better understand the dose contribution from all particles and simulate the DNA damage due to this treatment. RESULTS Close to the seed α-particles deliver the majority of dose, however at radial distances greater than 4 mm, the contribution of β-particles is greater. The RBE has been estimated as a function of number of double strand breaks (DSBs) and complex DSBs. A maximum seed spacing of 5.5 mm and 6.5 mm was found to deliver at least 20 Gy RBE weighted dose between the seeds for RBEDSB and RBEcDSB respectively. CONCLUSIONS The DNA damage changes with radial distance from the seed and has been found to become less complex with distance, which is potentially easier for the cell to repair. Close to the seed α-particles contribute the majority of dose, however the contribution from other particles cannot be neglected and may influence the choice of seed spacing.
Collapse
Affiliation(s)
| | - Chiara De Sio
- School of Physics, University of Bristol, Bristol, UK
| | - Lana Beck
- School of Physics, University of Bristol, Bristol, UK
| | - Susanna Guatelli
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| | - Dousatsu Sakata
- Division of Health Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yuyao Shi
- School of Physics, University of Bristol, Bristol, UK
| | - Jinyan Duan
- School of Physics, University of Bristol, Bristol, UK
| | - Jaap Velthuis
- School of Physics, University of Bristol, Bristol, UK
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| |
Collapse
|
16
|
Tanudji J, Kasai H, Okada M, Ogawa T, Aspera SM, Nakanishi H. 211At on gold nanoparticles for targeted radionuclide therapy application. Phys Chem Chem Phys 2024; 26:12915-12927. [PMID: 38629229 DOI: 10.1039/d3cp05326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Targeted alpha therapy (TAT) is a methodology that is being developed as a promising cancer treatment using the α-particle decay of radionuclides. This technique involves the use of heavy radioactive elements being placed near the cancer target area to cause maximum damage to the cancer cells while minimizing the damage to healthy cells. Using gold nanoparticles (AuNPs) as carriers, a more effective therapy methodology may be realized. AuNPs can be good candidates for transporting these radionuclides to the vicinity of the cancer cells since they can be labeled not just with the radionuclides, but also a host of other proteins and ligands to target these cells and serve as additional treatment options. Research has shown that astatine and iodine are capable of adsorbing onto the surface of gold, creating a covalent bond that is quite stable for use in experiments. However, there are still many challenges that lie ahead in this area, whether they be theoretical, experimental, and even in real-life applications. This review will cover some of the major developments, as well as the current state of technology, and the problems that need to be tackled as this research topic moves along to maturity. The hope is that with more workers joining the field, we can make a positive impact on society, in addition to bringing improvement and more knowledge to science.
Collapse
Affiliation(s)
- Jeffrey Tanudji
- Department of Applied Physics, The University of Osaka, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideaki Kasai
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Michio Okada
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
- Department of Chemistry, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tetsuo Ogawa
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
- Department of Physics, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Susan M Aspera
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Hiroshi Nakanishi
- National Institute of Technology, Akashi College, 679-3 Nishioka, Uozumi-cho, Akashi, Hyogo 674-8501, Japan
| |
Collapse
|
17
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Exploring the PET in vivo generator 134Ce as a theranostic match for 225Ac. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591165. [PMID: 38712285 PMCID: PMC11071455 DOI: 10.1101/2024.04.25.591165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Purpose The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations not possible with 225Ac. In this work, 225Ac- and 134Ce-labeled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. Methods The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labeled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. Results In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. Conclusion When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edwin C. Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
18
|
Sathekge M, Morgenstern A. Advances in targeted alpha therapy of cancer. Eur J Nucl Med Mol Imaging 2024; 51:1205-1206. [PMID: 38376807 DOI: 10.1007/s00259-024-06658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Affiliation(s)
- Mike Sathekge
- Steve Biko Academic Hospital, Nuclear Medicine Research Infrastructure (NuMeRI), University of Pretoria, Pretoria, South Africa.
| | | |
Collapse
|
19
|
Sakmár M, Kozempel J, Kučka J, Janská T, Štíbr M, Vlk M, Šefc L. Biodistribution study of 211Pb progeny released from intravenously applied 223Ra labelled TiO 2 nanoparticles in a mouse model. Nucl Med Biol 2024; 130-131:108890. [PMID: 38402673 DOI: 10.1016/j.nucmedbio.2024.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Targeted alpha therapy is one of the most powerful therapeutical modalities available in nuclear medicine. It's therapeutic potency is based on the nuclides that emit one or several alpha particles providing strong and highly localized therapeutic effects. However, some of these radionuclides, like e.g.223Ra or 225Ac decay in cascades, where the radioactive progeny originating from the consecutive alpha-decays may leave the original vector and cause unwanted irradiation of non-target organs. This progeny, even if partially retained in target tissues by internalization processes, typically do not follow the fate of originally targeted radiopharmaceutical and potentially spread over body following their own biodistribution. In this study we aimed to estimate 211Pb/211Bi progeny fate from the 223Ra surface-labelled TiO2 nanoparticles in vitro and the fate of 211Pb in vivo in a mice model. RESULTS In vitro stability studies have shown significant differences between the release of the mother 223Ra and its progeny (211Pb, 211Bi) in all the biological matrices that have been tested. The lowest released activities were measured in saline, resulting in less than 5 % of released activity for all nuclides. Contrary to that, the highest released activity of 223Ra of up to 10 % within 48 h was observed in 5 % solution of albumin. The released activity of its progeny; the 211Pb and 211Bi was in the range of 20-40 % in this test medium. Significantly higher released activities of 211Pb and 211Bi compared to 223Ra by at least 10 % was observed in each biological medium, except saline, where no significant differences were observed. The in vivo biodistribution studies results in a mice model, show similar pattern, where it was found that even after accumulation of nanoparticles in target tissues, approximately 10 % of 211Pb is continuously released into the blood stream within 24 h, followed by its natural accumulation in kidneys. CONCLUSION This study confirms our assumption that the progeny formed in a chain alpha decay of a certain nuclide, in this case the 223Ra, can be released from its original vector, leave the target tissue, relocate and could be deposited in non-target organs. We did not observe complete progeny wash-out from its original target tissues in our model. This indicates strong dependence of the progeny hot atom fate after its release from the original radiopharmaceutical preparation on multiple factors, like their internalization and retention in cells, cell membranes, extracellular matrices, protein binding, etc. We hypothesize, that also the primary tumour or metastasis size, their metabolic activity may significantly influence progeny fate in vivo, directly impacting the dose delivered to non-target tissues and organs. Therefore a bottom-up approach should be followed and detailed pre-/clinical studies on the release and biodistribution of radioactive progeny originating from the chain alpha emitters should be preferably performed.
Collapse
Affiliation(s)
- Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Ján Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic.
| | - Jan Kučka
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Heyrovského náměstí 1888-2, 16000 Prague 6, Czech Republic
| | - Tereza Janská
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Matěj Štíbr
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic
| | - Luděk Šefc
- Charles University in Prague, 1st Faculty of Medicine, Centre of Advanced Preclinical Imaging (CAPI), Salmovská 3, 12000 Prague 2, Czech Republic
| |
Collapse
|
20
|
Cao S, Kang Y, Tang H, Chen Z. Separation of lead-212 from natural thorium solution utilizing novel sulfonamide dibenzo-18-crown-6. Dalton Trans 2024; 53:3722-3730. [PMID: 38299333 DOI: 10.1039/d3dt04166b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The extraction of lead-212 (212Pb) from radioactive thorium (Th) waste is immensely important, as it serves to mitigate environmental risks associated with radioactive waste and provides a vital source for medical isotopes. To economically extract 212Pb from thorium, we synthesized a novel extractant known as 2,13-disulfonyldiethylamine dibenzo-18-crown-6 (DSADB18C6). We assessed its performance in isolating Pb(II) by employing stable lead and optimizing the parameters of the extraction system. The results showcased an exceptional ability to extract Pb(II) efficiently. Within 10 minutes, using 20 mmol of DSADB18C6 and under conditions of 10 mg L-1 lead concentration (HNO3 = 0.5 mol L-1), the extraction efficiency reached up to 96.1%. Even after four rounds of stripping with 0.4 mol L-1 ammonium citrate, the efficiency remained at 90.2%. Moreover, the extraction stoichiometry and thermodynamics revealed that DSADB18C6 exhibited superior extraction performance compared to the commercial extractant 4',4'',(5'')-di-(tert-butyldicyclohexano)-18-crown-6 (DtBuDC18C6), in line with the density functional theory (DFT) calculation result. Furthermore, we successfully separated 212Pb from the thorium nitrate solution, maintaining radioactive equilibrium with its progeny. Gamma-spectroscopy confirmed a recovery yield of extraction exceeding 85.7%. This study presents a viable approach, underscoring the potential of DSADB18C6 as a promising extractant for the effective separation of 212Pb from radioactive thorium sources.
Collapse
Affiliation(s)
- Shiquan Cao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Yujia Kang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Huiping Tang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Zhi Chen
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Kairemo K. Targeted alpha therapy: a new tool for advanced prostate cancer. Lancet Oncol 2024; 25:148-149. [PMID: 38218191 DOI: 10.1016/s1470-2045(23)00672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
|
23
|
Kaneda-Nakashima K, Shirakami Y, Kadonaga Y, Watabe T, Ooe K, Yin X, Haba H, Shirasaki K, Kikunaga H, Tsukada K, Toyoshima A, Cardinale J, Giesel FL, Fukase K. Comparison of Nuclear Medicine Therapeutics Targeting PSMA among Alpha-Emitting Nuclides. Int J Mol Sci 2024; 25:933. [PMID: 38256007 PMCID: PMC10815831 DOI: 10.3390/ijms25020933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method.
Collapse
Affiliation(s)
- Kazuko Kaneda-Nakashima
- Laboratory of Radiation Biological Chemistry, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
- MS-CORE, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (Y.S.); (Y.K.); (T.W.); (K.O.); (A.T.); (K.F.)
- Department of Science, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Yoshifumi Shirakami
- MS-CORE, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (Y.S.); (Y.K.); (T.W.); (K.O.); (A.T.); (K.F.)
- Department of Science, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Yuichiro Kadonaga
- MS-CORE, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (Y.S.); (Y.K.); (T.W.); (K.O.); (A.T.); (K.F.)
- Nuclear Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Tadashi Watabe
- MS-CORE, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (Y.S.); (Y.K.); (T.W.); (K.O.); (A.T.); (K.F.)
- Nuclear Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Kazuhiro Ooe
- MS-CORE, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (Y.S.); (Y.K.); (T.W.); (K.O.); (A.T.); (K.F.)
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Xiaojie Yin
- Nishina Center for Accelerator-Based Science Nuclear Chemistry Group, RIKEN, Wako 351-0198, Japan; (X.Y.); (H.H.)
| | - Hiromitsu Haba
- Nishina Center for Accelerator-Based Science Nuclear Chemistry Group, RIKEN, Wako 351-0198, Japan; (X.Y.); (H.H.)
| | - Kenji Shirasaki
- Laboratory of Alpha-Ray Emitters, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan;
| | - Hidetoshi Kikunaga
- Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan;
| | - Kazuaki Tsukada
- Research Group of Heavy Element Nuclear Science, Advanced Science Research Center, Japan Atomic Energy Agency, Naka-gun 319-1195, Japan;
| | - Atsushi Toyoshima
- MS-CORE, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (Y.S.); (Y.K.); (T.W.); (K.O.); (A.T.); (K.F.)
- Department of Science, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Jens Cardinale
- Nuclear Medicine Department, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; (J.C.); (F.L.G.)
| | - Frederik L. Giesel
- Nuclear Medicine Department, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; (J.C.); (F.L.G.)
| | - Koichi Fukase
- MS-CORE, FRC, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (Y.S.); (Y.K.); (T.W.); (K.O.); (A.T.); (K.F.)
- Department of Science, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
- Natural Product Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
24
|
Yagishita A, Katsuragawa M, Takeda S, Shirakami Y, Ooe K, Toyoshima A, Takahashi T, Watabe T. Development and Utility of an Imaging System for Internal Dosimetry of Astatine-211 in Mice. Bioengineering (Basel) 2023; 11:25. [PMID: 38247903 PMCID: PMC11154565 DOI: 10.3390/bioengineering11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In targeted radionuclide therapy, determining the absorbed dose of the ligand distributed to the whole body is vital due to its direct influence on therapeutic and adverse effects. However, many targeted alpha therapy drugs present challenges for in vivo quantitative imaging. To address this issue, we developed a planar imaging system equipped with a cadmium telluride semiconductor detector that offers high energy resolution. This system also comprised a 3D-printed tungsten collimator optimized for high sensitivity to astatine-211, an alpha-emitting radionuclide, and adequate spatial resolution for mouse imaging. The imager revealed a spectrum with a distinct peak for X-rays from astatine-211 owing to the high energy resolution, clearly distinguishing these X-rays from the fluorescent X-rays of tungsten. High collimator efficiency (4.5 × 10-4) was achieved, with the maintenance of the spatial resolution required for discerning mouse tissues. Using this system, the activity of astatine-211 in thyroid cancer tumors with and without the expression of the sodium iodide symporter (K1-NIS/K1, respectively) was evaluated through in vivo imaging. The K1-NIS tumors had significantly higher astatine-211 activity (sign test, p = 0.031, n = 6) and significantly decreased post-treatment tumor volume (Student's t-test, p = 0.005, n = 6). The concurrent examination of intratumor drug distribution and treatment outcome could be performed with the same mice.
Collapse
Affiliation(s)
- Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Shin’ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Yoshifumi Shirakami
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Kazuhiro Ooe
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Atsushi Toyoshima
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Tadashi Watabe
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| |
Collapse
|
25
|
Nelson BJB, Wilson J, Andersson JD, Wuest F. Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications. Pharmaceuticals (Basel) 2023; 16:1622. [PMID: 38004486 PMCID: PMC10674391 DOI: 10.3390/ph16111622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT.
Collapse
Affiliation(s)
- Bryce J. B. Nelson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - Jan D. Andersson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
26
|
Jang A, Lanka SM, Ruan HT, Kumar HLS, Jia AY, Garcia JA, Mian OY, Barata PC. Novel therapies for metastatic prostate cancer. Expert Rev Anticancer Ther 2023; 23:1251-1263. [PMID: 38030394 DOI: 10.1080/14737140.2023.2290197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Patients with metastatic prostate cancer, especially in the castrate-resistant setting, have a poor prognosis. Many agents have been approved for metastatic prostate cancer, such as androgen receptor pathway inhibitors, taxane-based chemotherapy, radiopharmaceuticals, and immunotherapy. However, prostate cancer remains the leading cause of cancer deaths in nonsmoking men. Fortunately, many more novel agents are under investigation. AREAS COVERED We provide an overview of the broad group of novel therapies for metastatic prostate cancer, with an emphasis on active and recruiting clinical trials that have been recently published and/or presented at national or international meetings. EXPERT OPINION The future for patients with metastatic prostate cancer is promising, with further development of novel therapies such as radiopharmaceuticals. Based on a growing understanding of prostate cancer biology, novel agents are being designed to overcome resistance to approved therapies. There are many trials using novel agents either as monotherapy or in combination with already approved agents with potential to further improve outcomes for men with advanced prostate cancer.
Collapse
Affiliation(s)
- Albert Jang
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Sree M Lanka
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hui Ting Ruan
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Hamsa L S Kumar
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Jorge A Garcia
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Omar Y Mian
- Translational Hematology and Oncology Research, Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Pedro C Barata
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|