1
|
Schapiro K, Marder E. Resilience of circuits to environmental challenge. Curr Opin Neurobiol 2024; 87:102885. [PMID: 38857559 PMCID: PMC11316650 DOI: 10.1016/j.conb.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
Animals of all kinds evolved to deal with anticipated and unanticipated changes in a variety of features in their environments. Consequently, all environmental perturbations, adaptations, and acclimation involve a myriad of factors that, together, contribute to environmental resilience. New work highlights the importance of neuromodulation in the control of environmental resilience, and illustrates that different components of the nervous system may be differentially resilient to environmental perturbations. Climate change is today pushing animals to deal with previously unanticipated environmental challenges, and therefore understanding the complex biology of adaptation and acclimation to various environmental conditions takes on new urgency.
Collapse
Affiliation(s)
- Kyra Schapiro
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
2
|
Cheng J, Zhang Z, Li Y, Zhang L, Hui M, Sha Z. Rolling with the punches: Organism-environment interactions shape spatial pattern of adaptive differentiation in the widespread mantis shrimp Oratosquilla oratoria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170244. [PMID: 38278258 DOI: 10.1016/j.scitotenv.2024.170244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Investigating spatial pattern of adaptive variation and its underlying processes can inform the adaptive potential distributed within species ranges, which is increasingly important in the context of a changing climate. A correct interpretation of adaptive variation pattern requires that population history and the ensuing population genetic structure are taken into account. Here we carried out such a study by integrating population genomic analyses, demographic model testing and species distribution modeling to investigate patterns and causes of adaptive differentiation in a widespread mantis shrimp, Oratosquilla oratoria, along a replicated, broad-scale temperature gradient in the northwestern Pacific (NWP). Our results supported a strong hierarchical ecogeographic structure dominated by habitat-linked divergence among O. oratoria populations accompanied with introgressive hybridization. A combined FST outlier and environmental correlation analyses revealed remarkable temperature-associated clines in allele frequency across paired North-South populations on Chinese and Japanese coasts, and identified a suite of loci associated with temperature adaptation. Further demographic model testing revealed the observed clinal variation derived partly from Pleistocene divergence followed by recent secondary contact. More importantly, the likelihood of hybridization is predicted to increase as climate change progresses, which would break barriers to gene flow and enable the spread of adaptive genetic variation. These results support that not only is temperature-driven adaptive differentiation occurs in O. oratoria but that such pattern is likely attributed to ancient adaptive variation, sustained by contemporary ocean conditions and a semi-permeable barrier to gene flow maintained by selection. They moreover provide genomic insights into the distribution of adaptive potential across O. oratoria' s species range. This work can serve as a case study to characterize adaptive diversity of marine species in the NWP by integrating environmental and genetic data at temporal and spatial scales in a population genomic framework, which would improve management and conservation actions under climate change.
Collapse
Affiliation(s)
- Jiao Cheng
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510275, China
| | - Yulong Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liwen Zhang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Hui
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhongli Sha
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|