1
|
Blount SL, Liu X, McBride JD. The Utilization of PRAME in the Diagnosis, Prognosis, and Treatment of Melanoma. Cells 2024; 13:1740. [PMID: 39451258 PMCID: PMC11505691 DOI: 10.3390/cells13201740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Melanoma, a deadly form of skin cancer, has seen improved survival rates due to advances in diagnosis and treatment, yet the need for further improvement remains critical. Tumor-associated antigens, such as PRAME (Preferentially Expressed Antigen in Melanoma), offer promising avenues for enhanced diagnostic precision, prognostic assessment, and targeted immunotherapy. PRAME, a cancer testis antigen, is selectively expressed in various cancers, including melanoma, and plays a key role in promoting tumorigenesis through inhibition of retinoic acid signaling, epithelial-to-mesenchymal transition, and immune evasion. This review explores the diagnostic utility of PRAME in distinguishing melanoma from benign nevi, its prognostic value in aggressive melanoma subtypes, and its potential as a therapeutic target in cancer vaccines and adoptive T-cell therapies. While PRAME-targeted therapies face challenges such as tumor heterogeneity and immune suppression, ongoing research aims to overcome these barriers, offering hope for more effective melanoma treatments.
Collapse
Affiliation(s)
- Samuel L. Blount
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Xiaochen Liu
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jeffrey D. McBride
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
2
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Chen Y, Tong X, Lu R, Zhang Z, Ma T. All-trans retinoic acid in hematologic disorders: not just acute promyelocytic leukemia. Front Pharmacol 2024; 15:1404092. [PMID: 39027338 PMCID: PMC11254857 DOI: 10.3389/fphar.2024.1404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
All-trans retinoic acid (ATRA) plays a role in tissue development, neural function, reproduction, vision, cell growth and differentiation, tumor immunity, and apoptosis. ATRA can act by inducing autophagic signaling, angiogenesis, cell differentiation, apoptosis, and immune function. In the blood system ATRA was first used with great success in acute promyelocytic leukemia (APL), where ATRA differentiated leukemia cells into mature granulocytes. ATRA can play a role not only in APL, but may also play a role in other hematologic diseases such as immune thrombocytopenia (ITP), myelodysplastic syndromes (MDS), non-APL acute myeloid leukemia (AML), aplastic anemia (AA), multiple myeloma (MM), etc., especially by regulating mesenchymal stem cells and regulatory T cells for the treatment of ITP. ATRA can also increase the expression of CD38 expressed by tumor cells, thus improving the efficacy of daratumumab and CD38-CART. In this review, we focus on the mechanism of action of ATRA, its role in various hematologic diseases, drug combinations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Tong
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Rongyuan Lu
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Zhengfu Zhang
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| |
Collapse
|
4
|
Powała K, Żołek T, Brown G, Kutner A. Molecular Interactions of Selective Agonists and Antagonists with the Retinoic Acid Receptor γ. Int J Mol Sci 2024; 25:6568. [PMID: 38928275 PMCID: PMC11203493 DOI: 10.3390/ijms25126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
All-trans retinoic acid (ATRA), the major active metabolite of all-trans retinol (vitamin A), is a key hormonal signaling molecule. In the adult organism, ATRA has a widespread influence on processes that are crucial to the growth and differentiation of cells and, in turn, the acquisition of mature cell functions. Therefore, there is considerable potential in the use of retinoids to treat diseases. ATRA binds to the retinoic acid receptors (RAR) which, as activated by ATRA, selectively regulate gene expression. There are three main RAR isoforms, RARα, RARβ, and RARγ. They each have a distinct role, for example, RARα and RARγ regulate myeloid progenitor cell differentiation and hematopoietic stem cell maintenance, respectively. Hence, targeting an isoform is crucial to developing retinoid-based therapeutics. In principle, this is exemplified when ATRA is used to treat acute promyelocytic leukemia (PML) and target RARα within PML-RARα oncogenic fusion protein. ATRA with arsenic trioxide has provided a cure for the once highly fatal leukemia. Recent in vitro and in vivo studies of RARγ have revealed the potential use of agonists and antagonists to treat diseases as diverse as cancer, heterotopic ossification, psoriasis, and acne. During the final drug development there may be a need to design newer compounds with added modifications to improve solubility, pharmacokinetics, or potency. At the same time, it is important to retain isotype specificity and activity. Examination of the molecular interactions between RARγ agonists and the ligand binding domain of RARγ has revealed aspects to ligand binding that are crucial to RARγ selectivity and compound activity and key to designing newer compounds.
Collapse
Affiliation(s)
- Katarzyna Powała
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andrzej Kutner
- Department of Drug Chemistry Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| |
Collapse
|
5
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
6
|
Gao J, Wang J, Guan C, Shi W, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Huang Z, Li J, Bao H, Xu Y, Cui Y, Xu X, Zhong X. Advances in Drug Therapy for Metastatic Pancreatic Ductal Adenocarcinoma. J Cancer 2024; 15:2214-2228. [PMID: 38495490 PMCID: PMC10937276 DOI: 10.7150/jca.89788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/26/2023] [Indexed: 03/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a notably poor prognosis. A large number of patients with PDAC develop metastases before they are diagnosed with metastatic pancreatic cancer (mPDAC). For mPDAC, FOLFIRINOX or gemcitabine plus nab-paclitaxel are the current first-line treatments. It is important to note, however, that many patients will fail chemotherapy because of drug resistance. Heterogeneous tumors and complex tumor microenvironments are key factors. As a result, clinical researchers are exploring a variety of alternative treatment modalities. Current understanding of the molecular signature and immune landscape of PDAC has motivated the emergence of different targeted and immune-based therapeutic approaches, some of which have shown promising results. The purpose of this review is to discuss the new targets and new drugs for mPDAC in terms of specific pathogenic factors such as metabolic vulnerability, DNA damage repair system, tumor microenvironment and immune system, in order to identify potential vulnerabilities in mPDAC patients and hopefully improve the prognosis of mPDAC patients.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an 710032, Shanxi, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563006, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, 361000, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangzhou, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou,310000, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer, Fujian Medical University, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xiaoxue Xu
- School of Health Administration, Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|
7
|
Caricasulo MA, Zanetti A, Terao M, Garattini E, Paroni G. Cellular and micro-environmental responses influencing the antitumor activity of all-trans retinoic acid in breast cancer. Cell Commun Signal 2024; 22:127. [PMID: 38360674 PMCID: PMC10870483 DOI: 10.1186/s12964-024-01492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
All-trans retinoic acid (ATRA) is the most relevant and functionally active metabolite of Vitamin-A. From a therapeutic standpoint, ATRA is the first example of pharmacological agent exerting its anti-tumor activity via a cell differentiating action. In the clinics, ATRA is used in the treatment of Acute Promyelocytic Leukemia, a rare form of myeloid leukemia with unprecedented therapeutic results. The extraordinary effectiveness of ATRA in the treatment of Acute Promyelocytic Leukemia patients has raised interest in evaluating the potential of this natural retinoid in the treatment of other types of neoplasias, with particular reference to solid tumors.The present article provides an overview of the available pre-clinical and clinical studies focussing on ATRA as a therapeutic agent in the context of breast cancer from a holistic point of view. In detail, we focus on the direct effects of ATRA in breast cancer cells as well as the underlying molecular mechanisms of action. In addition, we summarize the available information on the action exerted by ATRA on the breast cancer micro-environment, an emerging determinant of the progression and invasive behaviour of solid tumors. In particular we discuss the recent evidences of ATRA activity on the immune system. Finally, we analyse and discuss the results obtained with the few ATRA-based clinical trials conducted in the context of breast cancer.
Collapse
Affiliation(s)
- Maria Azzurra Caricasulo
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Adriana Zanetti
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Mineko Terao
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy
| | - Gabriela Paroni
- Department of Biochemistry and Molecular Pharmacology, Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, Milan, 20156, Italy.
| |
Collapse
|