1
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
2
|
Bagetta G, Bano D, Scuteri D. Basic, Translational, and Clinical Research on Dementia. Int J Mol Sci 2024; 25:6861. [PMID: 38999974 PMCID: PMC11241002 DOI: 10.3390/ijms25136861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The global impact of dementia is an increasing area of concern and, according to the Alzheimer's Disease International (ADI) World Alzheimer Report 2021, up to 90% of dementia patients in low- and middle-income countries are not diagnosed [...].
Collapse
Affiliation(s)
- Giacinto Bagetta
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Damiana Scuteri
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Al-Musawi I, Dennis BH, Clowry GJ, LeBeau FEN. Evidence for prodromal changes in neuronal excitability and neuroinflammation in the hippocampus in young alpha-synuclein (A30P) transgenic mice. FRONTIERS IN DEMENTIA 2024; 3:1404841. [PMID: 39081599 PMCID: PMC11285622 DOI: 10.3389/frdem.2024.1404841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 08/02/2024]
Abstract
Introduction Neuronal hyperexcitability and neuroinflammation are thought to occur at early stages in a range of neurodegenerative diseases. Neuroinflammation, notably activation of microglia, has been identified as a potential prodromal marker of dementia with Lewy bodies (DLB). Using a transgenic mouse model of DLB that over-expresses human mutant (A30P) alpha-synuclein (hα-syn) we have investigated whether early neuroinflammation is evident in the hippocampus in young pre-symptomatic animals. Methods Previous studies have shown early hyperexcitability in the hippocampal CA3 region in male A30P mice at 2-4 months of age, therefore, in the current study we have immunostained this region for markers of neuronal activity (c-Fos), reactive astrocytes (glial fibrillary acidic protein, GFAP), microglia (ionizing calcium binding adapter protein 1, Iba-1) and reactive microglia (inducible nitric oxide synthase, iNOS). Results We found an interesting biphasic change in the expression of c-Fos in A30P mice with high expression at 1 month, consistent with early onset of hyperexcitability, but lower expression from 2-4 months in male A30P mice compared to wild-type (WT) controls, possibly indicating chronic hyperexcitability. Neuroinflammation was indicated by significant increases in the % area of GFAP and the number of Iba-1+ cells that expressed iNOS immunoreactivity in the CA3 region in 2-4 months A30P male mice compared to WT controls. A similar increase in % area of GFAP was observed in female A30P mice, however, the Iba-1 count was not different between female WT and A30P mice. In WT mice aged 2-4 months only 4.6% of Iba-1+ cells co-expressed iNOS. In contrast, in age matched A30P mice 87% of cells co-expressed Iba-1 and iNOS. Although there was no difference in GFAP immunoreactivity at 1 month, Iba-1/iNOS co-expression was also increased in a cohort of 1 month old A30P mice. Discussion Abnormal hα-syn expression in A30P mice caused early changes in network excitability, as indicated by c-Fos expression, and neuroinflammation which might contribute to disease progression.
Collapse
Affiliation(s)
| | | | | | - Fiona E. N. LeBeau
- Biosciences Institute and Centre for Transformative Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Pan X, Donaghy PC, Roberts G, Chouliaras L, O’Brien JT, Thomas AJ, Heslegrave AJ, Zetterberg H, McGuinness B, Passmore AP, Green BD, Kane JPM. Plasma metabolites distinguish dementia with Lewy bodies from Alzheimer's disease: a cross-sectional metabolomic analysis. Front Aging Neurosci 2024; 15:1326780. [PMID: 38239488 PMCID: PMC10794326 DOI: 10.3389/fnagi.2023.1326780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Background In multifactorial diseases, alterations in the concentration of metabolites can identify novel pathological mechanisms at the intersection between genetic and environmental influences. This study aimed to profile the plasma metabolome of patients with dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), two neurodegenerative disorders for which our understanding of the pathophysiology is incomplete. In the clinical setting, DLB is often mistaken for AD, highlighting a need for accurate diagnostic biomarkers. We therefore also aimed to determine the overlapping and differentiating metabolite patterns associated with each and establish whether identification of these patterns could be leveraged as biomarkers to support clinical diagnosis. Methods A panel of 630 metabolites (Biocrates MxP Quant 500) and a further 232 metabolism indicators (biologically informative sums and ratios calculated from measured metabolites, each indicative for a specific pathway or synthesis; MetaboINDICATOR) were analyzed in plasma from patients with probable DLB (n = 15; age 77.6 ± 8.2 years), probable AD (n = 15; 76.1 ± 6.4 years), and age-matched cognitively healthy controls (HC; n = 15; 75.2 ± 6.9 years). Metabolites were quantified using a reversed-phase ultra-performance liquid chromatography column and triple-quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode, or by using flow injection analysis in MRM mode. Data underwent multivariate (PCA analysis), univariate and receiving operator characteristic (ROC) analysis. Metabolite data were also correlated (Spearman r) with the collected clinical neuroimaging and protein biomarker data. Results The PCA plot separated DLB, AD and HC groups (R2 = 0.518, Q2 = 0.348). Significant alterations in 17 detected metabolite parameters were identified (q ≤ 0.05), including neurotransmitters, amino acids and glycerophospholipids. Glutamine (Glu; q = 0.045) concentrations and indicators of sphingomyelin hydroxylation (q = 0.039) distinguished AD and DLB, and these significantly correlated with semi-quantitative measurement of cardiac sympathetic denervation. The most promising biomarker differentiating AD from DLB was Glu:lysophosphatidylcholine (lysoPC a 24:0) ratio (AUC = 0.92; 95%CI 0.809-0.996; sensitivity = 0.90; specificity = 0.90). Discussion Several plasma metabolomic aberrations are shared by both DLB and AD, but a rise in plasma glutamine was specific to DLB. When measured against plasma lysoPC a C24:0, glutamine could differentiate DLB from AD, and the reproducibility of this biomarker should be investigated in larger cohorts.
Collapse
Affiliation(s)
- Xiaobei Pan
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul C. Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gemma Roberts
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - John T. O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Alan J. Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amanda J. Heslegrave
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Institute, UCL, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Institute, UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Kowloon, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anthony P. Passmore
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Brian D. Green
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joseph P. M. Kane
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Abujamai J, Satar R, Ansari SA. Designing and Formulation of Nanocarriers for "Alzheimer's and Parkinson's" Early Detection and Therapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1251-1262. [PMID: 38351689 DOI: 10.2174/0118715273297024240201055550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 08/28/2024]
Abstract
The potential of nanotechnology in advancing the diagnosis and treatment of neurodegenerative diseases is explored in this comprehensive literature review. The findings of these studies suggest that nanotechnology has the capacity to improve existing therapeutic approaches, create novel and safe compounds, and develop more precise imaging techniques and diagnostic methods for neurodegenerative diseases. With the emergence of the nanomedicine era, a new and innovative approach of diagnosing and treating these conditions has been introduced. Notably, the researchers' development of a nanocarrier drug delivery tool demonstrates immense potential compared to conventional therapy, as it maximizes therapeutic efficacy and minimizes undesirable as side effects.
Collapse
Affiliation(s)
- Jakleen Abujamai
- Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Rukhsana Satar
- Division of Biochemistry, Department of Physiology and Biochemistry, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|