1
|
Berger S, Seeger F, Yu TY, Aydin M, Yang H, Rosenblum D, Guenin-Macé L, Glassman C, Arguinchona L, Sniezek C, Blackstone A, Carter L, Ravichandran R, Ahlrichs M, Murphy M, Pultz IS, Kang A, Bera AK, Stewart L, Garcia KC, Naik S, Spangler JB, Beigel F, Siebeck M, Gropp R, Baker D. Preclinical proof of principle for orally delivered Th17 antagonist miniproteins. Cell 2024; 187:4305-4317.e18. [PMID: 38936360 PMCID: PMC11316638 DOI: 10.1016/j.cell.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.
Collapse
Affiliation(s)
- Stephanie Berger
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| | - Franziska Seeger
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ta-Yi Yu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Merve Aydin
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Daniel Rosenblum
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Laure Guenin-Macé
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Immunobiology and Therapy Unit, INSERM U1224, Institut Pasteur, Paris 75015, France
| | - Caleb Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Lauren Arguinchona
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Sniezek
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA; Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Department of Medicine, Ronald O. Perelman Department of Dermatology, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florian Beigel
- Department of Medicine II, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Matthias Siebeck
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Roswitha Gropp
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Schindler M, Schuster-Winkelmann P, Weß V, Czell S, Rueff F, Wollenberg A, Siebeck M, Gropp R. NOD/Scid IL2Rγ null Mice Reconstituted with PBMCs from Patients with Atopic Dermatitis or Psoriasis Vulgaris Reflect the Respective Phenotype. JID INNOVATIONS 2024; 4:100268. [PMID: 38736522 PMCID: PMC11087984 DOI: 10.1016/j.xjidi.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 05/14/2024] Open
Abstract
NSG (NOD/Scid IL2Rγnull) mice reconstituted with PBMCs donated by patients with ulcerative colitis or Crohn's disease highly reflect the respective pathological phenotype. To determine whether these findings could be applicable to atopic dermatitis (AD) and psoriasis vulgaris (PV), PBMCs isolated from patients with AD and PV were first subjected to immunological profiling. Subsequently, NSG mice were reconstituted with these PBMCs. Hierarchical clustering and network analysis revealed a distinct profile of patients with AD and PV with activated CD4+ T cells (CD69, CD25) occupying a central position in the AD network and CD4+ CD134+ cells acting as the main hub in the PV network. After dermal application of DMSO, both NSG mice reconstituted with PBMCs from donors with AD (ie, NSG-AD mice) and NSG mice reconstituted with PBMCs from donors with PV (ie, NSG-PV mice) exhibited increased clinical, skin, and histological scores. Immunohistochemical analysis, frequencies of splenic human leukocytes, and cytokine expression levels indicated that CD4+ CD69+ cells, M1 and TSLP receptor-expressing monocytes, switched B cells, and monocyte chemoattractant protein 3 were the driving factors of inflammation in NSG-AD mice. In contrast, inflammation in NSG-PV mice was characterized by an increase in fibroblasts in the epidermis, frequencies of CD1a-expressing monocytes, and IL-17 levels. Therefore, the pathological phenotypes of NSG-AD mice and NSG-PV mice differ and partially reflect the respective human diseases.
Collapse
Affiliation(s)
- Marietta Schindler
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paula Schuster-Winkelmann
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Veronika Weß
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Czell
- Department of Dermatology and Allergology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Franziska Rueff
- Department of Dermatology and Allergology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Wollenberg
- Department of Dermatology and Allergology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Matthias Siebeck
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Roswitha Gropp
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Lenti MV, Santacroce G, Broglio G, Rossi CM, Di Sabatino A. Recent advances in intestinal fibrosis. Mol Aspects Med 2024; 96:101251. [PMID: 38359700 DOI: 10.1016/j.mam.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Despite many progresses have been made in the treatment of inflammatory bowel disease, especially due to the increasing number of effective therapies, the development of tissue fibrosis is a very common occurrence along the natural history of this condition. To a certain extent, fibrogenesis is a physiological and necessary process in all those conditions characterised by chronic inflammation. However, the excessive deposition of extracellular matrix within the bowel wall will end up in the formation of strictures, with the consequent need for surgery. A number of mechanisms have been described in this process, but some of them are not yet clear. For sure, the main trigger is the presence of a persistent inflammatory status within the mucosa, which in turn favours the occurrence of a pro-fibrogenic environment. Among the main key players, myofibroblasts, fibroblasts, immune cells, growth factors and cytokines must be mentioned. Although there are no available therapies able to target fibrosis, the only way to prevent it is by controlling inflammation. In this review, we summarize the state of art of the mechanisms involved in gut fibrogenesis, how to diagnose it, and which potential targets could be druggable to tackle fibrosis.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|