1
|
Ragab A, Raslan RR, Abusaif MS, Thabet HK, Ammar YA, Gohar NA. Discovery and optimization of 2-pyridones as dual h-DHFR/EGFR TK inhibitors with immunomodulatory potential; design, synthesis, anti-proliferative activity, and apoptosis inducer. Eur J Med Chem 2025; 294:117751. [PMID: 40378576 DOI: 10.1016/j.ejmech.2025.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Liver and colorectal cancers present considerable health challenges, underscoring the need to identify innovative targeted therapeutics. Tumor progression can be prevented by targeting EGFR-TK and h-DHFR as essential molecular targets. In this context, we synthesized a new series of 2-pyridones from the reaction of 2-cyanoacrylamide with active methylene or 2-cyanoacetanilide with activated double bonds under basic conditions. The structure of the synthesized 2-pyridones was confirmed through microanalysis and spectroscopic data. In comparison to doxorubicin, the spiro 2-pyridine derivative 9b exhibited the highest anti-proliferative activity, demonstrating IC50 values of 6.89 ± 0.4 μM and 5.68 ± 0.3 μM against HepG-2 and Caco-2 cell lines, respectively, with nearly 2-fold increase in efficacy observed in Caco-2 cells. Additionally, compound 9b demonstrated a significant safety profile concerning normal cells (WI-38), as indicated by selectivity index values of 14.66 and 12.09 against the Caco-2 and HepG-2 cell lines, respectively. Moreover, flow cytometry analysis revealed that compound 9b halted the cell cycle at the G1/S phase in Caco-2 treated cells, demonstrating an increase in the percentage of cells undergoing both early and late apoptosis. The apoptotic potential was corroborated by the up-regulation of BAX and the down-regulation of Bcl-2 levels. Compound 9b exhibited significant inhibitory activity against h-DHFR, with an IC50 value of 0.192 ± 0.011 μM, compared to methotrexate (IC50 = 0.191 ± 0.011 μM). Furthermore, compound 9b demonstrated EGFR inhibitory activity, with IC50 of 0.109 ± 0.005 μM, which is close to the inhibition observed with Lapatinib (IC50 = 0.044 ± 0.002 μM). Compound 9b had better immunomodulatory properties with significant inhibitory efficacy on TNF-α and IL-6, with IC50 values of 0.40 ± 0.03 pg/mL and 0.60 ± 0.02 pg/mL, respectively. These values indicate a greater potency than the positive control drug Lapatinib, which displayed IC50 values of 0.41 ± 0.03 pg/mL and 0.74 ± 0.05 pg/mL for TNF-α and IL-6, respectively. In addition, in silico metabolism prediction using SwissADME and BioTransformer tools revealed that compound 9b is a potential inhibitor of CYP2C9 and CYP3A4, and is predicted to undergo metabolic transformations primarily via aromatic hydroxylation and ketone reduction, while maintaining acceptable stability of its ester moiety. Finally, the molecular docking assessment, together with the direct in vitro enzymatic inhibition results, confirmed that the 2-pyridone derivative 9b can potently bind to and inhibit both EGFR and h-DHFR through favorable binding interactions.
Collapse
Affiliation(s)
- Ahmed Ragab
- Chemistry Department, Faculty of Science (boys), Al-Azhar University, 11884, Nasr City, Cairo, Egypt; Chemistry Department, Faculty of Science, Galala University, Galala City, 43511, Suez, Egypt
| | - Reham R Raslan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science (boys), Al-Azhar University, 11884, Nasr City, Cairo, Egypt; Department for Synthesis and Characterization of Polymers, Polymer Institute of the Slovak Academy of Sciences SAS, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
| | - Hamdy Khamees Thabet
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia; Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia.
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (boys), Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Nirvana A Gohar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt
| |
Collapse
|
2
|
Moosavi F, Divar M, Khabnadideh S, Tavakkoli M, Mohabbati M, Saso L, Poustforoosh A, Firuzi O. Spiroindoline quinazolinedione derivatives as inhibitors of P-glycoprotein: potential agents for overcoming multidrug resistance in cancer therapy. Mol Divers 2025:10.1007/s11030-025-11150-5. [PMID: 40106127 DOI: 10.1007/s11030-025-11150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Multidrug resistance (MDR) presents a major challenge for effectiveness of chemotherapy. This study investigates the effectiveness of spiroindoline quinazolinediones in reversing MDR mediated by P-glycoprotein (P-gp) overexpression in cancer cells. A series of synthesized hybrid spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione derivatives (compounds 5a-5l) were analyzed for their ability to enhance rhodamine 123 (Rhd123) accumulation in the MES-SA/DX5 cell line using flow cytometry. The MTT assay was also employed to evaluate the compounds' effectiveness in reversing drug resistance. Additionally, docking studies and molecular dynamics simulations were conducted to investigate the interaction of these compounds with the P-gp transporter. The Rhd123 accumulation assay in MDR cancer cells revealed that most compounds, in particular 5f, 5g, 5h, 5i, 5j, 5k, and 5l, exhibited significant potential as P-gp inhibitors. Among the tested derivatives, compounds 5g and 5l demonstrated the best effects, and increased Rhd123 accumulation up to 12.9 times compared to untreated cells. Additionally, compounds 5f through 5 l bearing methylbenzyl (5f), benzyl (5g), pentyl (5 ), p-bromobenzyl (5i), p-chlorobenzyl (5j), dichlorobenzyl (5k), and tert-butylbenzyl (5l) substituents on the isatin ring effectively restored sensitivity to doxorubicin at their non-toxic concentrations in resistant MES-SA/DX5 cells. Among these, compound 5l at 5 μM exhibited the highest inhibitory potential, and lowered doxorubicin's IC50 value 10.1 times compared to control. Moreover, in silico investigation identified the potential interactions of test compounds with critical residues of P-gp involved in its efflux function. Our study suggests that the synthesized spiroindoline quinazolinediones may have high potentials as agents capable of reversing MDR in cancer cells.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- School of Pharmacy, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. Le Aldo Moro 5, 00185, Rome, Italy
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Mabrouk RR, Mahdy HA, Abdallah AE, Celik I, Abdelsalam Ouf AM, Alamoudi MK, Alnami A, Al Ward MMS, Mehany AB, El-Zahabi MA. Novel triazoloquinazoline derivatives as VEGFR inhibitors: synthesis, cytotoxic evaluation and in silico studies. Future Med Chem 2025; 17:529-541. [PMID: 39995350 PMCID: PMC11901504 DOI: 10.1080/17568919.2025.2468146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND New triazoloquinazoline derivatives were synthesized to explore their cytotoxic activity on various cancer cell lines, prompted by the need for effective anticancer agents. RESEARCH DESIGN AND METHODS All synthesized compounds were confirmed by spectroscopic methods and tested in vitro for their inhibitory activities against hepatocellular carcinoma (HepG-2), breast cancer (MCF-7), and prostate cancer (PC3) cell lines. Ten compounds were tested in vitro to explore their inhibitory activity against the VEGFR-2. Additionally, various studies were investigated for the most active compound 6, including cell cycle analysis, apoptotic activity assessment, effect on gene expression, safety profiling, molecular docking, MD simulation, and ADMET analysis. RESULTS Compounds 3a, 3c, and 6 exhibited higher cytotoxic activity against MCF-7 than doxorubicin. Compound 6 was most potent, arresting the cell cycle at G1 phase and showing proapoptotic action. It significantly inhibited VEGFR-2 and altered gene expression, promoting BAX, P21, and P53 while downregulating BCL-2. Docking and MD simulations indicated stable interaction with VEGFR-2, safety, and ADMET profiles suggested favorable drug-likeness and safety. CONCLUSIONS Compound 6 has shown promising anticancer potential, particularly against breast cancer, but further research is needed to confirm these findings and address long-term safety.
Collapse
Affiliation(s)
- Reda R. Mabrouk
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Directorate of Health Affairs in Buhaira-Clinical Research Department, Ministry of Health and Population, Damanhour, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ismail Celik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | - Mariam K. Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Aisha Alnami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maged Mohammed Saleh Al Ward
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Al Razi University, Sana’a, Yemen
| | - Ahmed B.M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Abdallah AE, Eissa IH, Mehany ABM, Celik I, Sakr H, Metwaly KH, El-Adl K, El-Zahabi MA. Discovery of New Immunomodulatory Anticancer Thalidomide Analogs: Design, Synthesis, Biological Evaluation and In Silico Studies. Chem Biodivers 2025; 22:e202401768. [PMID: 39540225 DOI: 10.1002/cbdv.202401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
New thalidomide analogs have been designed and synthesized by hybridizing the immunomodulatory gutarimide moiety with three antiproliferative nuclei: quinazolinedione, phthalazinedione, and quinoxalinone. The biological results revealed the strong impact of quinazoline derivatives 7 a and 28, and phthalazine based 20 a against HepG-2, MCF-7, PC3, and HCT-116 cell lines, compared to thalidomide. In particular, compound 20 a was the most promising as it had far better biological activity than thalidomide with regard to inhibition of TNF-α, IL-6, caspase 3, COX-I/II, and VEGFR-2, as well as cell cycle arrest, and apoptosis rate enhancement in MCF-7 cells, the most sensitive cell line to the current new molecules. Compound 20 a caused reduction in levels of TNF-α and IL-6 by 75.22 % and 82.51 %, respectively. It elevated the caspase-3 level by 7.21-fold. Furthermore, IC50 against COX-I, COX-II, and VEGFR-2 were 0.65 μM, 0.33 μM, and 232 nM, respectively. In addition, it raised the apoptosis rate from 65.65 % to 99.89 %. Moreover, 20 a was further examined through a docking study and a 200 ns molecular dynamics simulation for its complex with VEGFR-2, along with computational ADME properties. This work suggests the high significance of compounds 20 a, 7 a and 28, as lead compounds for development of new effective immunomodulatory antitumor drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - K H Metwaly
- Center of Plasma Technology, Al-Azhar University, 11884, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
5
|
Yousef RG, Eissa IH, Elkady H, M Mehany AB, Abo-Saif MA, Radwan MM, ElSohly MA, Ibrahim IM, Elwan A, El-Zahabi MA. Design and synthesis of new nicotinamides as immunomodulatory VEGFR-2 inhibitors and apoptosis inducers. Future Med Chem 2024; 16:2583-2598. [PMID: 39540547 PMCID: PMC11731296 DOI: 10.1080/17568919.2024.2421150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Nicotinamide-based VEGFR-2 inhibitors have good contribution in drug discovery.Aim: Development of novel nicotinamides as VEGFR-2 inhibitors.Methods: different in vitro and in silico assays were conducted to evaluate the VEGFR-2 inhibition and cytotoxicity.Results: Compound 16c displayed strongest anti-VEGFR-2 potentiality and good anti-proliferative effects. Compound 16c enhanced apoptosis and caused cell cycle arrest in the Pre-G1 and S phases. Compound 16c boosted the level of the apoptotic caspase-3 and inhibited the level of TNF-α and IL-6 in tumor cells. Molecular docking and molecular dynamics (MD) simulations indicated the outstanding binding potential of compound 16c against VEGFR-2.Conclusion: Compound 16c is a good candidate for the creation of a novel antiangiogenic lead anticancer medication.
Collapse
Affiliation(s)
- Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mariam Ali Abo-Saif
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, University, MS38677, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, University, MS38677, USA
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
6
|
Chen M, Cheng S, Dai X, Yu J, Wang H, Xu B, Luo H, Xu G. Design, Synthesis, and Biological Evaluation of Novel Quinazoline Derivatives Possessing a Trifluoromethyl Moiety as Potential Antitumor Agents. Chem Biodivers 2024; 21:e202301776. [PMID: 38602834 DOI: 10.1002/cbdv.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 μM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.
Collapse
Affiliation(s)
- Mingxiu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xing Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - HuiDi Wang
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - BiXue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| |
Collapse
|
7
|
El-Kalyoubi S, El-Sebaey SA, Elfeky SM, AL-Ghulikah HA, El-Zoghbi MS. Novel Aminopyrimidine-2,4-diones, 2-Thiopyrimidine-4-ones, and 6-Arylpteridines as Dual-Target Inhibitors of BRD4/PLK1: Design, Synthesis, Cytotoxicity, and Computational Studies. Pharmaceuticals (Basel) 2023; 16:1303. [PMID: 37765111 PMCID: PMC10535864 DOI: 10.3390/ph16091303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Structural-based drug design and solvent-free synthesis were combined to obtain three novel series of 5-arylethylidene-aminopyrimidine-2,4-diones (4, 5a-c, 6a,b), 5-arylethylidene-amino-2-thiopyrimidine-4-ones (7,8), and 6-arylpteridines (9,10) as dual BRD4 and PLK1 inhibitors. MTT assays of synthesized compounds against breast (MDA-MB-231), colorectal (HT-29), and renal (U-937) cancer cells showed excellent-to-good cytotoxic activity, compared to Methotrexate; MDA-MB-231 were the most sensitive cancer cells. The most active compounds were tested against normal Vero cells. Compounds 4 and 7 significantly inhibited BRD4 and PLK1, with IC50 values of 0.029, 0.042 µM, and 0.094, 0.02 µM, respectively, which are nearly comparable to volasertib (IC50 = 0.017 and 0.025 µM). Compound 7 triggered apoptosis and halted cell growth at the G2/M phase, similarly to volasertib. It also upregulated the BAX and caspase-3 markers while downregulating the Bcl-2 gene. Finally, active compounds fitted the volasertib binding site at BRD4 and PLK1 and showed ideal drug-like properties and pharmacokinetics, making them promising anticancer candidates.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Youssef Abbas Street, Cairo 11754, Egypt
| | - Sherin M. Elfeky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 355516, Egypt;
| | - Hanan A. AL-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mona S. El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Gamal Abd Al-Nasir Street, Shibin-Elkom 32511, Egypt;
| |
Collapse
|