1
|
Bao Y, Wang Y, Liu H, Lan J, Li Z, Zong W, Zhao Z. Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life (Basel) 2025; 15:112. [PMID: 39860052 PMCID: PMC11766571 DOI: 10.3390/life15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems. The experimental results show that TCS significantly inhibits HSA esterase activity, with exacerbating inhibition in the presence of PSNPs, which is attributed to the alteration of HSA conformation and microenvironment of the amino acid residues induced by PSNPs. Molecular docking and site marker competitive studies indicate that TCS predominantly binds to site I of subdomain Sudlow II and the presence of PSNPs does not affect the binding sites. Spectra analyses indicate that the quenching mechanism between TCS and HSA belongs to the static quenching type and the presence of PSNPs does not change the fluorescence quenching type. The HSA fluorescence quenching and the conformational alterations induced by TCS are further enhanced in the presence of PSNPs, indicating that PSNPs enhance the binding of TCS to HSA by making TCS more accessible to the binding sites. This study provides valuable information about the toxicity of PSNPs and TCS in case of co-exposure.
Collapse
Affiliation(s)
- Yan Bao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yaoyao Wang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Hongbin Liu
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Zhicai Li
- Anqiu Branch of Weifang Municipal Bureau of Ecology and Environment, Weifang 262199, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zongshan Zhao
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Li X, Li S, Liu Y, Cui L, Yang D, Chen S, Shao X, Yuan H, Yan X. Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117719. [PMID: 39823676 DOI: 10.1016/j.ecoenv.2025.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L. chemosensory protein 3 (AmelCSP3) and neonicotinoids with a cis-oxygen bridge heterocyclic structure. Employing surface plasmon resonance (SPR) in conjunction with multispectral techniques and molecular modeling, this study meticulously analyzed the binding affinity, specificity, and kinetics under conditions that simulate real-world exposure scenarios. Key parameters such as the number of binding sites (n), binding constants (Ka), dissociation constants (KD), and binding distances (r) were quantitatively assessed. The findings revealed that hydrogen bonding and hydrophobic interactions serve as the primary forces driving the binding process, with fluorescence quenching mechanisms involving both dynamic and static interactions. Molecular docking and dynamics simulations further illustrated the stability of these interactions within the active site of the protein. Of particular interest, cis-structured neonicotinoids demonstrated distinct binding characteristics compared to their trans-structured counterparts, including an inverse relationship between the binding constant and temperature. These findings offer critical insights for the design of cis-structured neonicotinoid compounds that are safer for pollinators, thus reducing the impact on non-target organisms such as bees. Furthermore, this research enhances the understanding of the interaction mechanisms between cis-structured neonicotinoid substances and honeybee proteins, providing a foundation for future studies on the environmental safety of these compounds.
Collapse
Affiliation(s)
- Xiangshuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daibin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuning Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Han W, Yang Y, Zhang H, Qiao H, Zhang Y, Zhang Z, Wang J. Interaction of different chloro-substituted phenylurea herbicides (diuron and chlortoluron) with bovine serum albumin: Insights from multispectral study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124338. [PMID: 38678839 DOI: 10.1016/j.saa.2024.124338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
In this work, the interaction between different chloro-substituted phenylurea herbicides (diuron (DIU) and chlortoluron (CHL)) and BSA were investigated and compared at three different temperatures (283 K, 298 K and 310 K) adopting UV-vis, fluorescence, and circular dichroism spectra. The quenching mechanism of the interaction was also proposed. The energy transfer between BSA and DIU/CHL was investigated. The binding sites of DIU/CHL and BSA and the variations in the microenvironment of amino acid residues were studied. The changes of the secondary structure of BSA were analyzed. The results indicate that both DIU and CHL can significantly interact with BSA, and the degree of the interaction between DIU/CHL and BSA increases with the increase of the DIU/CHL concentration. The fluorescence quenching of BSA by DIU/CHL results from the combination of static and dynamic quenching. The DIU/CHL has a weak to moderate binding affinity for BSA, and the binding stoichiometry is 1:1. Their binding processes are spontaneous, and hydrophobic interaction, hydrogen bonds and van der Waals forces are the main interaction forces. DIU/CHL has higher affinity for subdomain IIA (Site I) of BSA than subdomain IIIA (Site II), and also interacts with tryptophan more than tyrosine residues. The energy transfer can occur from BSA to DIU/CHL. By comparison, the strength of the interaction of DIU-BSA is always greater than that of CHL-BSA, and DIU can destroy the secondary structure of BSA molecules greater than CHL and thus the potential toxicity of DIU is higher due to DIU with more chlorine substituents than CHL. It is expected that this study on the interaction can offer in-depth insights into the toxicity of phenylurea herbicides, as well as their impact on human and animal health at the molecular level.
Collapse
Affiliation(s)
- Wenhui Han
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Ying Yang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Honglu Zhang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Heng Qiao
- Qingdao ECH Testing Limited Company, Qingdao 266109, China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhaohong Zhang
- School of Environment, Liaoning University, Shenyang 110036, China.
| | - Jun Wang
- School of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
4
|
Li X, Li S, Qin Z, Cui L, Yang D, Chen S, Yan X, Yuan H. Structural and functional impacts of neonicotinoids analogues on Apis mellifera's chemosensory protein: Insights from spectroscopic and molecular modeling investigations. Int J Biol Macromol 2024; 273:133080. [PMID: 38866284 DOI: 10.1016/j.ijbiomac.2024.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
In the intricate web of ecological relationships, pollinators such as the Italian honeybee (Apis mellifera) play a crucial role in maintaining biodiversity and agricultural productivity. This study focuses on the interactions between three neonicotinoid compounds and the honeybee's chemosensory protein 3 (CSP3), a key player in their olfactory system. Employing advanced spectroscopic techniques and molecular modeling, we explore the binding dynamics and conformational changes in CSP3 upon exposure to these pesticides. The research reveals that all three neonicotinoids considerably quench CSP3's fluorescence through a dynamic and static mixing mechanism, indicating a strong binding affinity, predominantly driven by hydrophobic interactions. UV-visible absorption, synchronous fluorescence, and 3D fluorescence spectra support slight changes in the microenvironment around the aromatic amino acids of CSP3. Circular dichroism spectra indicate a reduction in CSP3's α-helix content, suggesting structural alterations. Molecular docking and dynamics simulations further elucidate the binding modes and stability of these interactions, highlighting the role of specific amino acids in CSP3's binding cavity. Findings provide critical insights into molecular mechanisms by which neonicotinoids may impair honeybee chemosensory function, offering implications for designing safer pesticides and understanding the broader ecological impact of these chemicals on pollinator health.
Collapse
Affiliation(s)
- Xiangshuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| | - Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daibin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuning Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Yu H, Xing Z, Jia K, Li S, Xu Y, Zhao P, Zhu X. Inquiry lipaseoring the mechanism of pancreatic lipase inhibition by isovitexin based on multispectral method and enzyme inhibition assay. LUMINESCENCE 2024; 39:e4765. [PMID: 38769927 DOI: 10.1002/bio.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the β-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.
Collapse
Affiliation(s)
- Hui Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongfu Xing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaijie Jia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sai Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yankun Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Nasr MS, Talaat W, Morshedy S, Kaddah MMY, Omran G, Keshk RM. A new fluorescence probe for sofosbuvir analysis in dosage form and spiked human plasma. LUMINESCENCE 2024; 39:e4742. [PMID: 38637644 DOI: 10.1002/bio.4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
A simple, rapid, and low-cost technique was developed to allow reliable analysis of the anti-hepatitis C drug sofosbuvir in bulk, tablet form, and spiked human plasma. This method depends on the ability of sofosbuvir to quench the fluorescence of the newly synthesized 2-amino-3-cyano-4,6-dimethylpyridine (reagent 3). Elemental analysis and spectral data were used to validate the structure of the synthesized reagent. The newly synthesized reagent exhibited a satisfactory level of fluorescence emission at 365 nm after excitation at 247 nm. All experimental variables that might affect the quenching process were analyzed and optimized. Linearity, range, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) were all validated in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The concentration range was shown to be linear between 0.1 and 1.5 μg/mL. The technique was effectively utilized for sofosbuvir analysis in both its tablet dosage form and spiked human plasma, with mean percentage recoveries of 100.13 ± 0.35 and 94.26 ± 1.69, respectively.
Collapse
Affiliation(s)
- Mohamed S Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Wael Talaat
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Samir Morshedy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | - Gamal Omran
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Reda M Keshk
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
Erkmen C, Celik I. Interaction mechanism of a pesticide, Azoxystrobin with bovine serum albumin: Assessments through fluorescence, UV-Vis absorption, electrochemical and molecular docking simulation techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123719. [PMID: 38064964 DOI: 10.1016/j.saa.2023.123719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
The current study's objective was to investigate how an antifungal pesticide Azoxystrobin (AZO) interacts with bovine serum albumin (BSA) under conditions that simulate a physiological medium (pH 7.4). This investigation was carried out using various experimental (UV-Vis absorption, steady-state fluorescence and 3-D fluorescence spectroscopies, and electrochemical) and theoretical (molecular docking and molecular dynamics simulations) methods. The fluorescence quenching data demonstrated that AZO caused fluorescence quenching in BSA, and this quenching process was attributed to the static quenching mechanism. By examining the fluorescence quenching of BSA at three different temperatures, it was determined that the binding constants for the AZO-BSA complexes were approximately 104 M-1 in magnitude, while the same magnitude of the binding constant was found by the electrochemical method. This indicates that the interaction between AZO and BSA was of moderate strength. This was further validated by the changes observed in the UV-Vis spectrum of BSA following the addition of AZO. The thermodynamic information, including ΔH and ΔS, revealed that the interaction forces primarily involved van der Waals forces as well as hydrogen bonds. The negative Gibbs free energy indicated that the reaction is spontaneous. In the theoretical investigation, the comparison highlights a remarkable consistency in how AZO interacts with the BSA active site over various time points. Hydrogen bonding and hydrophobic interactions consistently play a role in ensuring the stable and specific binding of the ligand. Moreover, the 3-D fluorescence spectral findings revealed alterations in the surrounding microenvironment of protein fluorophores when AZO binds. Upon analyzing the electrochemical data, it was observed that there was a consistent decrease in the peak currents of AZO when BSA was added to solutions containing AZO. The primary cause of this decrease in the peak currents was the reduction in the equilibrium concentration of AZO due to the addition of BSA. Furthermore, the formation of a non-electroactive complex between BSA and AZO, which impedes electron transport between AZO and the working electrode, accounts for these decreases. As a result, it can be said that the understanding of how AZO binds to BSA offers valuable insights that can be applied in the food, human health, and environment sectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara 06800, Türkiye.
| | - Ismail Celik
- Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kayseri 38039, Türkiye.
| |
Collapse
|