1
|
Xu H, Long J, Qi X, Li P, Yan C, Wang L, Jin Y, Liu H. Galectin-9 activates host immune response and improve immunoprotection of Onychostoma macrolepis against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109929. [PMID: 39341377 DOI: 10.1016/j.fsi.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Galectin-9 (Gal-9) belongs to a family of the glycan-binding proteins (GBPs) and is known to restrict bacterial activity via interacting with pathogen associated molecular pattern (PAMPs). However, the underlying immune mechanism of endogenous Gal-9 on fish against bacterial infection is still unclear. In this study, effects of Gal-9 from Onychostoma macrolepis (OmGal-9) on expression of immune-related genes were measured by HEK293T. The immune response of O. macrolepis with OmGal-9 overexpression to Aeromonas hydrophila (A. hydrophila) infection (1.65 × 108 CFU/mL) was evaluated by tissue bacterial load, fish survival rate and transcriptome analysis. The results showed that OmGal-9 displayed a punctate distribution in the nucleus and cytoplasm of HEK293T cells. Compared to cells transfected with the empty vector (EV group), recombinant plasmid pEGFP-Gal9 treatment (Gal9 group) significantly down-regulated the expression of immune-related genes TNFα, STAT3, MyD88, LCK, and p52 of HEK293T cells stimulated with LPS at 24 h, while up-regulated IκBα and caspase-1 (P < 0.05). The activities of catalase (CAT), superoxide dismutase (SOD), the total antioxidant capacity (T-AOC), alkaline phosphatase (AKP), acid phosphatase (ACP), and lysozyme (LZM) of O. macrolepis were significantly increased on 7 days in Gal9 group compared to EV group (P < 0.05). The bacterial load of liver, spleen, and kidney of O. macrolepis infected with A. hydrophila in Gal9 group at 24 h was significantly lower than that in EV group (P < 0.05), and the survival rate had increased from 15 % to 35 %. A comparative transcriptome analysis between the Gal9 and EV group identified 305 differentially expressed genes (DEGs). The analysis showed that OmGal-9 might play an important regulatory role in glycolysis/gluconeogenesis, fatty acid degradation, and ascorbate and aldarate metabolism. Moreover, the immune-related DEGs were predominantly enriched in eleven pathways, with the most important three of them being linked to innate immunity: NOD-like, C-type lectin and Toll-like receptor signaling pathway. Taking together, OmGal-9 can enhance the resistance of fish to bacterial diseases by improving immune system function and activating immune-related pathways.
Collapse
Affiliation(s)
- Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingfei Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ping Li
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanjiang Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Akanyibah FA, Zhu Y, Wan A, Ocansey DKW, Xia Y, Fang AN, Mao F. Effects of DNA methylation and its application in inflammatory bowel disease (Review). Int J Mol Med 2024; 53:55. [PMID: 38695222 DOI: 10.3892/ijmm.2024.5379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is marked by persistent inflammation, and its development and progression are linked to environmental, genetic, immune system and gut microbial factors. DNA methylation (DNAm), as one of the protein modifications, is a crucial epigenetic process used by cells to control gene transcription. DNAm is one of the most common areas that has drawn increasing attention recently, with studies revealing that the interleukin (IL)‑23/IL‑12, wingless‑related integration site, IL‑6‑associated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3 and apoptosis signaling pathways are involved in DNAm and in the pathogenesis of IBD. It has emerged that DNAm‑associated genes are involved in perpetuating the persistent inflammation that characterizes a number of diseases, including IBD, providing a novel therapeutic strategy for exploring their treatment. The present review discusses DNAm‑associated genes in the pathogenesis of IBD and summarizes their application as possible diagnostic, prognostic and therapeutic biomarkers in IBD. This may provide a reference for the particular form of IBD and its related methylation genes, aiding in clinical decision‑making and encouraging therapeutic alternatives.
Collapse
Affiliation(s)
- Francis Atim Akanyibah
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| | - Yi Zhu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, P.R. China
| | - Aijun Wan
- Zhenjiang College, Zhenjiang, Jiangsu 212028, P.R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - An-Ning Fang
- Basic Medical School, Anhui Medical College, Hefei, Anhui 230061, P.R. China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
3
|
Kuang H, Zhu X, Chen H, Tang H, Zhao H. The immunomodulatory mechanism of acupuncture treatment for ischemic stroke: research progress, prospects, and future direction. Front Immunol 2024; 15:1319863. [PMID: 38756772 PMCID: PMC11096548 DOI: 10.3389/fimmu.2024.1319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Complicated mechanisms are involved in the pathogenesis of IS. Immunomodulatory mechanisms are crucial to IS. Acupuncture is a traditional non-drug treatment that has been extensively used to treat IS. The exploration of neuroimmune modulation will broaden the understanding of the mechanisms underlying acupuncture treatment. This review summarizes the immune response of immune cells, immune cytokines, and immune organs after an IS. The immunomodulatory mechanisms of acupuncture treatment on the central nervous system and peripheral immunity, as well as the factors that influence the effects of acupuncture treatment, were summarized. We suggest prospects and future directions for research on immunomodulatory mechanisms of acupuncture treatment for IS based on current progress, and we hope that these will provide inspiration for researchers. Additionally, acupuncture has shown favorable outcomes in the treatment of immune-based nervous system diseases, generating new directions for research on possible targets and treatments for immune-based nervous system diseases.
Collapse
Affiliation(s)
- Hongjun Kuang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Huan Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Han Tang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Hong Zhao
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
4
|
Peng Y, Qiao S, Wang H, Shekhar S, Wang S, Yang J, Fan Y, Yang X. Enhancement of Macrophage Immunity against Chlamydial Infection by Natural Killer T Cells. Cells 2024; 13:133. [PMID: 38247825 PMCID: PMC10813948 DOI: 10.3390/cells13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Lung macrophage (LM) is vital in host defence against bacterial infections. However, the influence of other innate immune cells on its function, including the polarisation of different subpopulations, remains poorly understood. This study examined the polarisation of LM subpopulations (monocytes/undifferentiated macrophages (Mo/Mφ), interstitial macrophages (IM), and alveolar macrophages (AM)). We further assessed the effect of invariant natural killer T cells (iNKT) on LM polarisation in a protective function against Chlamydia muridarum, an obligate intracellular bacterium, and respiratory tract infection. We found a preferentially increased local Mo/Mφ and IMs with a significant shift to a type-1 macrophage (M1) phenotype and higher expression of iNOS and TNF-α. Interestingly, during the same infection, the alteration of macrophage subpopulations and the shift towards M1 was much less in iNKT KO mice. More importantly, functional testing by adoptively transferring LMs isolated from iNKT KO mice (iNKT KO-Mφ) conferred less protection than those isolated from wild-type mice (WT-Mφ). Further analyses showed significantly reduced gene expression of the JAK/STAT signalling pathway molecules in iNKT KO-Mφ. The data show an important role of iNKT in promoting LM polarisation to the M1 direction, which is functionally relevant to host defence against a human intracellular bacterial infection. The alteration of JAK/STAT signalling molecule gene expression in iNKT KO-Mφ suggests the modulating effect of iNKT is likely through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ying Peng
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Sai Qiao
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Hong Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan 250100, China
| | - Sudhanshu Shekhar
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jie Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Yijun Fan
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|