1
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
2
|
Yao Y, Hu L, Li D, Wang Y, Pan J, Fan D. Perioperative enriched environment attenuates postoperative cognitive dysfunction by upregulating microglia TREM2 via PI3K/Akt pathway in mouse model of ischemic stroke. Front Neurosci 2024; 18:1520710. [PMID: 39758888 PMCID: PMC11695310 DOI: 10.3389/fnins.2024.1520710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent complication that significantly affects the quality of life. Notably, patients who have experienced ischemic stroke are at an increased risk of developing POCD. Exploring the underlying mechanisms of POCD is crucial for its management. Numerous studies have established neuroinflammation as an independent risk factor in POCD pathogenesis, with TREM2 emerging as a key neuroprotective factor that modulates neuroinflammatory responses through the PI3K/Akt signaling pathway. In this study, we aimed to investigate the effect of TREM2 on POCD in a mouse model of ischemic stroke, with a focus on the mechanisms involving TREM2 and the PI3K/Akt signaling pathway. Our findings indicated that mice with ischemic stroke exhibited severe cognitive impairment after surgical trauma. However, we observed that an enriched environment (EE) could ameliorate this cognitive impairment by upregulating microglia TREM2 expression in the hippocampus and suppressing neuroinflammation. Additionally, the PI3K/AKT signaling pathway was activated in the hippocampal tissue of the mice housed in EE. Importantly, the beneficial neuroprotective and anti-inflammatory effects of EE were abolished when TREM2 was knocked down, underscoring the essential role of TREM2 in mediating the effects of EE on neuroinflammation and cognitive function after ischemic stroke and surgical trauma. In general, our study has confirmed a potential molecular mechanism that led to the occurrence of POCD in individuals with ischemic stroke and provided new strategies to treat POCD.
Collapse
Affiliation(s)
- Yuchen Yao
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liru Hu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danni Li
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhao Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Fan
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Wang Y, Tian J, Liu D, Li T, Mao Y, Zhu C. Microglia in radiation-induced brain injury: Cellular and molecular mechanisms and therapeutic potential. CNS Neurosci Ther 2024; 30:e14794. [PMID: 38867379 PMCID: PMC11168970 DOI: 10.1111/cns.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Jiayu Tian
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Dandan Liu
- Department of Electrocardiogram, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Tao Li
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Yanna Mao
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of PediatricsInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityKangfuqian Street 7Zhengzhou450052None SelectedChina
- Center for Brain Repair and Rehabilitation, Department of Clinical NeuroscienceInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgMedicinaregtan 11Göteborg40530Sweden
| |
Collapse
|
4
|
Mitra S. Special Issue 'Advances in Neurodegenerative Diseases Research and Therapy 2.0'. Int J Mol Sci 2024; 25:4709. [PMID: 38731928 PMCID: PMC11083915 DOI: 10.3390/ijms25094709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Neurodegenerative disorders (NDs) and the development of various therapeutic strategies to combat them have received increased attention in recent decades [...].
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
5
|
Pan HC, Yang CN, Lee WJ, Sheehan J, Wu SM, Chen HS, Lin MH, Shen LW, Lee SH, Shen CC, Pan LY, Liu SH, Sheu ML. Melatonin Enhanced Microglia M2 Polarization in Rat Model of Neuro-inflammation Via Regulating ER Stress/PPARδ/SIRT1 Signaling Axis. J Neuroimmune Pharmacol 2024; 19:11. [PMID: 38530514 DOI: 10.1007/s11481-024-10108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER-stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The functional neurobehavioral evaluations were used for investigation of Melatonin on the neuroinflammation in vivo. Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARδ) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFκB-IKKβ activation in primary microglia. The PPARδ agonist L-165,041 or over-expression of PPARδ plasmid (ov-PPARδ) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of Melatonin showed that the activated site was located at PPARδ (phospho-Thr256-PPARδ). Activated microglia had lowered PPARδ activity as well as the downstream SIRT1 formation via enhancing ER-stress. Melatonin, PPARδ agonist and ov-PPARδ all effectively reversed the above-mentioned effects. Melatonin blocked ER-stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, Melatonin or L-165,041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER-stress-dependent PPARδ/SIRT1 signaling cascade. This treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.
Collapse
Affiliation(s)
- Hung-Chuan Pan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Biotechnology Industrial Management and Innovation, National Chung Hsing University, Taichung, Taiwan
- College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Sheng-Mao Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Shiu Chen
- Department of Neurosurgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Mao-Hsun Lin
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Li-Wei Shen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Hua Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chang Shen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Liang-Yi Pan
- School of Medicine, Kaohsiung Medical University, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, 250, Kuo Kuang Road, Taichung, 402, Taiwan.
| |
Collapse
|
6
|
Yue J, Yao M. Humoral Cytokine Levels in Patients with Herpes Zoster: A Meta-Analysis. J Pain Res 2024; 17:887-902. [PMID: 38476878 PMCID: PMC10929134 DOI: 10.2147/jpr.s449211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Background The neurocutaneous disease caused by the reactivation of varicella-zoster virus (VZV) is called herpes zoster (HZ). The virus remains in the spinal cord back root after the chickenpox disappears. Diminished immune function can reactivate VZV, causing severe neuropathic pain that can last for months or even years, leading to postherpetic neuralgia (PHN), which severely affects the patient's quality of life. Much literature compares various cytokine levels in the body fluids HZ and PHN patients; however, no studies comprehensively evaluate them. Methods The Cochrane Library, PubMed, Web of Science, and Medline were screened for studies on cytokine levels in body fluids of HZ and PHN patients in the English language. Healthy individuals were selected as the control group, and the standardized mean difference (SMD) between the case and control groups was imputed using a fixed-effects or random-effects model and expressed as a 95% confidence interval (CI). The Newcastle-Ottawa Scale (NOS) was used to assess article quality. Results This meta-analysis included 13 articles with 1373 participants. Compared with the control group, the HZ group had significantly higher levels of interleukin (IL)-4, IL-6, IL-10, Hcy, and C-reactive protein (CRP), whereas the levels of CD3+ T and CD4+ T lymphocytes were reduced. Additionally, PHN patients had significantly higher levels of IL-6 and IL-1β compared with the control group. Conclusion This meta-analysis provides compelling evidence that CRP, Hcy, IL-1β, IL-4, IL-6, IL-8, and IL-10 are associated with the genesis and development of HZ and PHN. These markers can be used to improve the diagnosis and treatment of these diseases.Furthermore, for making the results more convincing, it is necessary to harmonize sample acquisition techniques and analytical methods and also require larger, more rigorously designed studies with broader subgroups and sex/age-matched controls.
Collapse
Affiliation(s)
- Jiayu Yue
- The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang, People’s Republic of China
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or the Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang, People’s Republic of China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or the Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang, People’s Republic of China
| |
Collapse
|