Komarova T, Ilina I, Taliansky M, Ershova N. Nanoplatforms for the Delivery of Nucleic Acids into Plant Cells.
Int J Mol Sci 2023;
24:16665. [PMID:
38068987 PMCID:
PMC10706211 DOI:
10.3390/ijms242316665]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells; however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and biosafe nanomaterials that were demonstrated to be applicable to the delivery of nucleic acids into plant cells. This review covers studies the object of which is the plant cell and the cargo for the nanocarrier is either DNA or RNA. The following nanoplatforms that could be potentially used for nucleic acid foliar delivery via spraying are discussed: mesoporous silica nanoparticles, layered double hydroxides (nanoclay), carbon-based materials (carbon dots and single-walled nanotubes), chitosan and, finally, cell-penetrating peptides (CPPs). Hybrid nanomaterials, for example, chitosan- or CPP-functionalized carbon nanotubes, are taken into account. The selected nanocarriers are analyzed according to the following aspects: biosafety, adjustability for the particular cargo and task (e.g., organelle targeting), penetration efficiency and ability to protect nucleic acid from environmental and cellular factors (pH, UV, nucleases, etc.) and to mediate the gradual and timely release of cargo. In addition, we discuss the method of application, experimental system and approaches that are used to assess the efficiency of the tested formulation in the overviewed studies. This review presents recent progress in developing the most promising nanoparticle-based materials that are applicable to both laboratory experiments and field applications.
Collapse