1
|
Li Q, Feng M, Zhang H, Zhou H, Cheng X. Entamoeba moshkovskii as a potential model organism for Gal/GalNAc lectin intermediate subunit exhibition and functional identification. Drug Discov Ther 2024; 18:178-187. [PMID: 38777764 DOI: 10.5582/ddt.2024.01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In humans, Entamoeba histolytica is the main pathogen causing various amoebiases, while E. moshkovskii falls between being a pathogen and non-pathogen. The two species have similar behavior patterns but differ significantly in pathogenicity, with previous studies and clinical data indicating that E. moshkovskii has a low level of pathogenicity. Meaningfully, the biological characteristics of E. moshkovskii make it a potential model organism and a protein display platform for studying the functions of important Entamoeba proteins. Here, an Amoeba-pcDNA3.1 vector capable of overexpressing E. histolytica-sourced Igl-C protein was constructed and successfully transfected into E. moshkovskii. High levels of expression of the Igl-C, EGFP, and NeoR genes were identified in Igl-C-transfected trophozoites using qRT-PCR, and they were subsequently confirmed using immunoblotting. Transfection of Igl-C protein improved the adherence and phagocytosis of E. moshkovskii, demonstrating that E. histolytica Igl mediated amoebic adhesion. Moreover, as a manifestation of protein virulence, the ability of post-transfected trophozoites to induce inflammation in host macrophages was also enhanced. In conclusion, this study utilizing the characteristics of E. moshkovskii confirmed its potential to serve as a model organism. E. moshkovskii could replace E. histolytica as the target of gene editing, allowing more efficient study of amoebic pathogenicity.
Collapse
Affiliation(s)
- Qingshan Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongze Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Xiao HD, Su N, Zhang ZD, Dai LL, Luo JL, Zhu XQ, Xie SC, Gao WW. Prevalence and Genetic Characterization of Giardia duodenalis and Blastocystis spp. in Black Goats in Shanxi Province, North China: From a Public Health Perspective. Animals (Basel) 2024; 14:1808. [PMID: 38929427 PMCID: PMC11201008 DOI: 10.3390/ani14121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Blastocystis spp. and Giardia duodenalis are two prevalent zoonotic intestinal parasites that can cause severe diarrhea and intestinal diseases in humans and many animals. Black goat (Capra hircus) farming is increasingly important in China due to the remarkable adaptability, high reproductive performance, rapid growth rate, and significant economic value of black goats. A number of studies have indicated that black goats are the potential reservoir of multiple zoonotic protozoans in China; however, the prevalence and zoonotic status of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province is still unknown. Thus, a total of 1200 fecal samples of black goats were collected from several representative regions at different altitudes in Shanxi Province and were examined for the presence and genotypes of G. duodenallis and Blastocystis spp. by amplifying the beta-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi) loci of G. duodenalis and SSU rRNA of Blastocystis spp. using PCR and sequence analysis methods, respectively. The overall prevalence of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province were 7.5% and 3.5%, respectively. Two assemblages (B and E) of G. duodenalis and four subtypes (ST5, ST10, ST14, and ST30) of Blastocystis spp. were identified, with assemblage E and ST10 as the prevalent genotype and subtype in black goats, respectively. One novel multilocus genotype (MLG) was identified in MLG-E and was designated as MLG-E12. For both G. duodenalis and Blastocystis spp., the prevalence was significantly related to the region and age groups (p < 0.05). This is the first report on the prevalence of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province. These results not only provide baseline data for the prevention and control of both parasites in black goats in Shanxi Province, but also enhance our understanding of the genetic composition and zoonotic potential of these two parasites.
Collapse
Affiliation(s)
- Han-Dan Xiao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
| | - Nan Su
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
| | - Ze-Dong Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
| | - Ling-Ling Dai
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
| | - Jun-Lin Luo
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shi-Chen Xie
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
| | - Wen-Wei Gao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (H.-D.X.); (N.S.); (Z.-D.Z.); (L.-L.D.); (J.-L.L.); (X.-Q.Z.); (S.-C.X.)
| |
Collapse
|
3
|
Ye J, Salti T, Zanditenas E, Trebicz-Geffen M, Benhar M, Ankri S. Impact of Reactive Sulfur Species on Entamoeba histolytica: Modulating Viability, Motility, and Biofilm Degradation Capacity. Antioxidants (Basel) 2024; 13:245. [PMID: 38397843 PMCID: PMC10886169 DOI: 10.3390/antiox13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive sulfur species (RSS) like hydrogen sulfide (H2S) and cysteine persulfide (Cys-SSH) emerged as key signaling molecules with diverse physiological roles in the body, depending on their concentration and the cellular environment. While it is known that H2S and Cys-SSH are produced by both colonocytes and by the gut microbiota through sulfur metabolism, it remains unknown how these RSS affect amebiasis caused by Entamoeba histolytica, a parasitic protozoan that can be present in the human gastrointestinal tract. This study investigates H2S and Cys-SSH's impact on E. histolytica physiology and explores potential therapeutic implications. Exposing trophozoites to the H2S donor, sodium sulfide (Na2S), or to Cys-SSH led to rapid cytotoxicity. A proteomic analysis of Cys-SSH-challenged trophozoites resulted in the identification of >500 S-sulfurated proteins, which are involved in diverse cellular processes. Functional assessments revealed inhibited protein synthesis, altered cytoskeletal dynamics, and reduced motility in trophozoites treated with Cys-SSH. Notably, cysteine proteases (CPs) were significantly inhibited by S-sulfuration, affecting their bacterial biofilm degradation capacity. Immunofluorescence microscopy confirmed alterations in actin dynamics, corroborating the proteomic findings. Thus, our study reveals how RSS perturbs critical cellular functions in E. histolytica, potentially influencing its pathogenicity and interactions within the gut microbiota. Understanding these molecular mechanisms offers novel insights into amebiasis pathogenesis and unveils potential therapeutic avenues targeting RSS-mediated modifications in parasitic infections.
Collapse
Affiliation(s)
- Jun Ye
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Talal Salti
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| | - Moran Benhar
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel (M.T.-G.)
| |
Collapse
|