1
|
Haraguchi A, Nagasawa J, Kuramochi K, Tsuchida S, Kobayashi A, Hatabu T, Sasai K, Ikadai H, Ushida K, Matsubayashi M. Anticoccidial activity of the secondary metabolites in alpine plants frequently ingested by wild Japanese rock ptarmigans. Int J Parasitol Parasites Wildl 2024; 25:100967. [PMID: 39220322 PMCID: PMC11362645 DOI: 10.1016/j.ijppaw.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024]
Abstract
The Japanese rock ptarmigan (Lagopus muta japonica) is an herbivorous species of partridges that inhabits only alpine zones. Alpine plants are their main source of food. These alpine plants contain toxic compounds to deter herbivores from consuming them. A previous analysis of the alpine plants frequently consumed by Japanese rock ptarmigans revealed the presence of a unique mixture of secondary metabolites and a novel compound. Additionally, wild Japanese rock ptarmigans are often infected by two species of Eimeria parasites. When these parasites were experimentally administered to Svalbard rock ptarmigans (Lagopus muta hyperborean), which do not feed on alpine plants, the birds exhibited symptoms, such as diarrhea and depression, and in some cases, they died. Although little is known about the pathogenesis of these parasites in wild Japanese rock ptarmigans, it was hypothesized that compounds found in alpine plants, their main food source, may reduce the pathogenicity of Eimeria parasites. In the present study, we evaluated the anticoccidial activity of the compounds derived from alpine plants in vitro using Eimeria tenella, which infects chickens belonging to the same pheasant family, as an experimental model. Twenty-seven natural components were extracted from eight alpine plants. The natural components were added to E. tenella sporozoites and incubated for 24 h to evaluate their direct effect. Additionally, Madin-Darby bovine kidney cells were incubated with sporozoites and natural components for 24 h to evaluate the inhibitory effect of the components on sporozoite cell invasion. Six compounds from four alpine plants decreased sporozoite viability by up to 88.3%, and two compounds inhibited sporozoite invasion into the cells. Although further studies are needed to evaluate the effects of these components against Eimeria infections in vivo, our findings suggest that these alpine plants may reduce the degree of infection by decreasing the number of sporozoites in the intestinal tract.
Collapse
Affiliation(s)
- Asako Haraguchi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Jyunki Nagasawa
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Atsushi Kobayashi
- Shin-etsu Nature Conservation Office, Ministry of the Environment, Ministry of Environment, Nagano, 380-0846, Japan
| | - Toshimitsu Hatabu
- Laboratory of Animal Physiology, Department of Animal Science, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazumi Sasai
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
2
|
Apaza Ticona L, Sánchez Sánchez-Corral J, Montoto Lozano N, Prieto Ramos P, Sánchez ÁR. Study of Pentacyclic Triterpenes from Lyophilised Aguaje: Anti-Inflammatory and Antioxidant Properties. Int J Mol Sci 2024; 25:9615. [PMID: 39273562 PMCID: PMC11395096 DOI: 10.3390/ijms25179615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Mauritia flexuosa (M. flexuosa), commonly known as Aguaje or Moriche palm, is traditionally recognised in South America for its medicinal properties, particularly for its anti-inflammatory and antioxidant effects. However, the bioactive compounds responsible for these effects have not been thoroughly investigated. This study aims to isolate and characterise pentacyclic triterpenoid compounds from M. flexuosa and to evaluate their therapeutic potential. Using various chromatographic and spectroscopic techniques including Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), three pentacyclic triterpenoid compounds were successfully isolated. Among them, compound 1 (3,11-dioxours-12-en-28-oic acid) exhibited notable bioactivity, significantly inhibiting the activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) (IC50 = 7.39-8.11 μM) and of Nitric Oxide (NO) (IC50 = 4.75-6.59 μM), both of which are key processes in inflammation. Additionally, compound 1 demonstrated potent antioxidant properties by activating the antioxidant enzyme Superoxide Dismutase (SOD) (EC50 = 1.87 μM) and the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) (EC50 = 243-547.59 nM), thus showing its potential in combating oxidative stress. This study is the first to isolate and characterise the three compounds from M. flexuosa, suggesting that compound 1 could be a promising candidate for the development of safer and more effective therapies for inflammatory and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Javier Sánchez Sánchez-Corral
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Natalia Montoto Lozano
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Pablo Prieto Ramos
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Spivak AY, Kuzmina US, Nedopekina DA, Dubinin MV, Khalitova RR, Davletshin EV, Vakhitova YV, Belosludtsev KN, Vakhitov VA. Synthesis and comparative analysis of the cytotoxicity and mitochondrial effects of triphenylphosphonium and F16 maslinic and corosolic acid hybrid derivatives. Steroids 2024; 209:109471. [PMID: 39002922 DOI: 10.1016/j.steroids.2024.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The cytotoxic profile and antiproliferative and mitochondrial effects of triterpene acid conjugates with mitochondriotropic lipophilic triphenylphosphonium (TPP+) and F16 cations were evaluated. Maslinic and corosolic acids chosen as the investigation objects were synthesized from commercially available oleanolic and ursolic acids. Study of the cytotoxic activity of TPP+ and F16 triterpenoid derivatives against six tumor cell lines demonstrated a comparable synergistic effect in the anticancer activity, which was most pronounced in the case of MCF-7 mammary adenocarcinoma cells and Jurkat and THP-1 leukemia cells. The corosolic and maslinic acid hybrid derivatives caused changes in the progression of tumor cell cycle phases when present in much lower doses than their natural triterpene acid precursors. The treatment of tumor cell lines with the conjugates resulted in the cell cycle arrest in the G1 phase and increase in the cell population in the subG1 phase. The cationic derivatives of the acids were markedly superior to their precursors as inducers of hyperproduction of reactive oxygen species and more effectively decreased the mitochondrial potential in isolated rat liver mitochondria. We concluded that the observed cytotoxic effect of TPP+ and F16 triterpenoid conjugates is attributable to the ability of these compounds to initiate mitochondrial dysfunctions. Their cytotoxicity, antiproliferative action, and mitochondrial effects depend little on the type of cationic groups used.
Collapse
Affiliation(s)
- Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Ulyana Sh Kuzmina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia.
| | - Rezeda R Khalitova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Vener A Vakhitov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| |
Collapse
|
4
|
Banerjee S, Banerjee S, Bishayee A, Da Silva MN, Sukocheva OA, Tse E, Casarcia N, Bishayee A. Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155858. [PMID: 39053249 DOI: 10.1016/j.phymed.2024.155858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.
Collapse
Affiliation(s)
- Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | | | - Milton Nascimento Da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
Li W, Mei W, Jiang H, Wang J, Li X, Quan L, Diao Y, Ma Y, Fan S, Xie Z, Gong M, Zhu H, Bi D, Zhang F, Ma L, Zhang J, Gao Y, Paschalidis A, Lin H, Liu F, Liu K, Ye M, Zhao Z, Duan Y, Chen Z, Xu Y, Xiao W, Tao S, Zhu L, Li H. Blocking the PD-1 signal transduction by occupying the phosphorylated ITSM recognition site of SHP-2. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2706-2. [PMID: 39235560 DOI: 10.1007/s11427-024-2706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction. Furthermore, we identify SHP-2 as the direct molecular target of PA for inhibiting the PD-1 signaling transduction. Subsequently, mechanistic studies suggest that PA binds to a new druggable site in the phosphorylated PD-1 ITSM recognition site of SHP-2, inhibiting the recruitment of SHP-2 by PD-1. Taken together, our findings demonstrate that PA has a potential application in cancer immunotherapy and occupying the phosphorylated ITSM recognition site of SHP-2 may serve as an alternative strategy to develop PD-1 signaling inhibitors. In addition, our success in target recognition provides a paradigm of target identification and confirmation for natural products.
Collapse
Affiliation(s)
- Wenjie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Wenyi Mei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Hewei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Lina Quan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yanni Ma
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sisi Fan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhuwei Xie
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Mengdie Gong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Huan Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Dewen Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Aris Paschalidis
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Fangfang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
6
|
Madej M, Kruszniewska-Rajs C, Kimsa-Dudek M, Synowiec-Wojtarowicz A, Chrobak E, Bębenek E, Boryczka S, Głuszek S, Adamska J, Kubica S, Matykiewicz J, Gola JM. The Influence of Betulin and Its Derivatives on Selected Colorectal Cancer Cell Lines' Viability and Their Antioxidant Systems. Cells 2024; 13:1368. [PMID: 39195258 DOI: 10.3390/cells13161368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Oxidative stress is considered one of the main reasons for the development of colorectal cancer (CRC). Depending on the stage of the disease, variable activity of the main antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), is observed. Due to limited treatment methods for CRC, new substances with potential antitumor activity targeting pathways related to oxidative stress are currently being sought, with substances of natural origin, including betulin, leading the way. The betulin molecule is chemically modified to obtain new derivatives with improved pharmacokinetic properties and higher biological activity. The aim of this study was to evaluate the effects of betulin and its new derivatives on viability and major antioxidant systems in colorectal cancer cell lines. The study showed that betulin and its derivative EB5 affect the antioxidant enzyme activity to varying degrees at both the protein and mRNA levels. The SW1116 cell line is more resistant to the tested compounds than RKO, which may be due to differences in the genetic and epigenetic profiles of these lines.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Agnieszka Synowiec-Wojtarowicz
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Department of Clinic Oncological Surgery Holycross Center, 25-317 Kielce, Poland
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Sebastian Kubica
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jarosław Matykiewicz
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Department of Clinic Oncological Surgery Holycross Center, 25-317 Kielce, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Jaroszewski B, Jelonek K, Kasperczyk J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines 2024; 12:1168. [PMID: 38927375 PMCID: PMC11200571 DOI: 10.3390/biomedicines12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural origin products are regarded as promising for the development of new therapeutic therapies with improved effectiveness, biocompatibility, reduced side effects, and low cost of production. Betulin (BE) is very promising due to its wide range of pharmacological activities, including its anticancer, antioxidant, and antimicrobial properties. However, despite advancements in the use of triterpenes for clinical purposes, there are still some obstacles that hinder their full potential, such as their hydrophobicity, low solubility, and poor bioavailability. To address these concerns, new BE derivatives have been synthesized. Moreover, drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. The aim of this manuscript is to summarize the recent achievements in the field of delivery systems of BE and its derivatives. This review also presents the BE derivatives mostly considered for medical applications. The electronic databases of scientific publications were searched for the most interesting achievements in the last ten years. Thus far, it is mostly nanoparticles (NPs) that have been considered for the delivery of betulin and its derivatives, including organic NPs (e.g., micelles, conjugates, liposomes, cyclodextrins, protein NPs), inorganic NPs (carbon nanotubes, gold NPs, silver), and complex/hybrid and miscellaneous nanoparticulate systems. However, there are also examples of microparticles, gel-based systems, suspensions, emulsions, and scaffolds, which seem promising for the delivery of BE and its derivatives.
Collapse
Affiliation(s)
- Bartosz Jaroszewski
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Janusz Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| |
Collapse
|
8
|
Ossowicz-Rupniewska P, Klebeko J, Georgieva I, Apostolova S, Struk Ł, Todinova S, Tzoneva RD, Guncheva M. Tuning of the Anti-Breast Cancer Activity of Betulinic Acid via Its Conversion to Ionic Liquids. Pharmaceutics 2024; 16:496. [PMID: 38675157 PMCID: PMC11053683 DOI: 10.3390/pharmaceutics16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpene with diverse biological activities. However, its low water solubility limits its pharmaceutical application. The conversion of pharmaceutically active molecules into ionic liquids (ILs) is a promising strategy to improve their physicochemical properties, stability, and/or potency. Here, we report the synthesis and characterization of 15 novel ILs containing a cation ethyl ester of a polar, non-polar, or charged amino acid [AAOEt] and an anion BA. Except for [ValOEt][BA], we observed preserved or up to 2-fold enhanced cytotoxicity toward hormone-dependent breast cancer cells MCF-7. The estimated IC50 (72 h) values within the series varied between 4.8 and 25.7 µM. We found that the most cytotoxic IL, [LysOEt][BA]2, reduced clonogenic efficiency to 20% compared to that of BA. In addition, we evaluated the effect of a 72 h treatment with BA or [LysOEt][BA]2, the most cytotoxic compound, on the thermodynamic behavior of MCF-7 cells. Based on our data, we suggest that the charged amino acid lysine included in the novel ILs provokes cytotoxicity by a mechanism involving alteration in membrane lipid organization, which could be accompanied by modulation of the visco-elastic properties of the cytoplasm.
Collapse
Affiliation(s)
- Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland; (P.O.-R.); (J.K.)
| | - Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland; (P.O.-R.); (J.K.)
| | - Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Łukasz Struk
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Rumiana Dimitrova Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.G.); (S.A.); (S.T.); (R.D.T.)
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Lombrea A, Watz CG, Bora L, Dehelean CA, Diaconeasa Z, Dinu S, Turks M, Lugiņina J, Peipiņš U, Danciu C. Enhanced Cytotoxicity and Antimelanoma Activity of Novel Semisynthetic Derivatives of Betulinic Acid with Indole Conjugation. PLANTS (BASEL, SWITZERLAND) 2023; 13:36. [PMID: 38202344 PMCID: PMC10780819 DOI: 10.3390/plants13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The prevalence and severity of skin cancer, specifically malignant melanoma, among Caucasians remains a significant concern. Natural compounds from plants have long been explored as potential anticancer agents. Betulinic acid (BI) has shown promise in its therapeutic properties, including its anticancer effects. However, its limited bioavailability has hindered its medicinal applications. To address this issue, two recently synthesized semisynthetic derivatives, N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2), were compared with previously reported compounds N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4), and BI. These compounds were evaluated for their effects on murine melanoma cells (B164A5) using various in vitro assays. The introduction of an indole framework at the C2 position of BI resulted in an increased cytotoxicity. Furthermore, the cytotoxicity of compound BA4 was enhanced by conjugating its carboxylic group with an amino acid residue. BA2 and BA3, with glycine and glycylglycine residues at C28, exhibited approximately 2.20-fold higher inhibitory activity compared to BA4. The safety assessment of the compounds on human keratinocytes (HaCaT) has revealed that concentrations up to 10 µM slightly reduced cell viability, while concentrations of 75 µM resulted in lower cell viability rates. LDH leakage assays confirmed cell membrane damage in B164A5 cells when exposed to the tested compounds. BA2 and BA3 exhibited the highest LDH release, indicating their strong cytotoxicity. The NR assay revealed dose-dependent lysosome disruption for BI and 2,3-indolo-betulinic acid derivatives, with BA1, BA2, and BA3 showing the most cytotoxic effects. Scratch assays demonstrated concentration-dependent inhibition of cell migration, with BA2 and BA3 being the most effective. Hoechst 3342 staining revealed that BA2 induced apoptosis, while BA3 induced necrosis at lower concentrations, confirming their anti-melanoma properties. In conclusion, the semisynthetic derivatives of BI, particularly BA2 and BA3, show promise as potential candidates for further research in developing effective anti-cancer therapies.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (L.B.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Claudia Geanina Watz
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Larisa Bora
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (L.B.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Uldis Peipiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
- Nature Science Technologies Ltd., Rupnicu Str. 4, LV-2114 Olaine, Latvia
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (L.B.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
10
|
Madej M, Gola J, Chrobak E. Synthesis, Pharmacological Properties, and Potential Molecular Mechanisms of Antitumor Activity of Betulin and Its Derivatives in Gastrointestinal Cancers. Pharmaceutics 2023; 15:2768. [PMID: 38140110 PMCID: PMC10748330 DOI: 10.3390/pharmaceutics15122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal (GI) cancers are an increasingly common type of malignancy, caused by the unhealthy lifestyles of people worldwide. Limited methods of treatment have prompted the search for new compounds with antitumor activity, in which betulin (BE) is leading the way. BE as a compound is classified as a pentacyclic triterpene of the lupane type, having three highly reactive moieties in its structure. Its mechanism of action is based on the inhibition of key components of signaling pathways associated with proliferation, migration, interleukins, and others. BE also has a number of biological properties, i.e., anti-inflammatory, hepatoprotective, neuroprotective, as well as antitumor. Due to its poor bioavailability, betulin is subjected to chemical modifications, obtaining derivatives with proven enhanced pharmacological and pharmacokinetic properties as a result. The method of synthesis and substituents significantly influence the effect on cells and GI cancers. Moreover, the cytotoxic effect is highly dependent on the derivative as well as the individual cell line. The aim of this study is to review the methods of synthesis of BE and its derivatives, as well as its pharmacological properties and molecular mechanisms of action in colorectal cancer, hepatocellular carcinoma, gastric cancer, and esophageal cancer neoplasms.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|