1
|
Zeng Q, Yu Q, Mo Y, Liang H, Chen B, Meng J. Genome-Wide Identification and Functional Characterization of the Acyl-CoA Dehydrogenase (ACAD) Family in Fusarium sacchari. Int J Mol Sci 2025; 26:973. [PMID: 39940743 PMCID: PMC11817166 DOI: 10.3390/ijms26030973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Fusarium sacchari is one of the primary causal agents of Pokkah boeng disease (PBD), an important disease of sugarcane worldwide. The acyl-CoA dehydrogenases (ACADs) constitute a family of flavoenzymes involved in the β-oxidation of fatty acids and amino acid catabolism in mitochondria. However, the role of ACADs in the pathogenesis of F. sacchari is unclear. Here, 14 ACAD-encoding genes (FsACAD-1-FsACAD-14) were identified by screening the entire genome sequence of F. sacchari. The FsACAD genes are distributed across seven chromosomes and were classified into seven clades based on phylogenetic analysis of the protein sequences. In vivo mRNA quantification revealed that the FsACAD genes are differentially expressed during sugarcane infection, and their expression patterns differ significantly in response to the in vitro induction of fatty acids of different classes. Fatty acid utilization assays of the FsACAD-deletion mutants revealed that the FsACADs varied in their preference and ability to break down different fatty acids and amino acids. There was variation in the adverse impact of FsACAD-deletion mutants on fungal traits, including growth, conidiation, stress tolerance, and virulence. These findings provide insights into the roles of FsACADs in F. sacchari, and the identification of FsACADs offers potential new targets for the improved control of PBD.
Collapse
Affiliation(s)
- Quan Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China;
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Quan Yu
- Guangxi Key Laboratory of Sugarcane Biology, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning 530004, China; (Q.Y.); (Y.M.); (H.L.)
| | - Yingxi Mo
- Guangxi Key Laboratory of Sugarcane Biology, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning 530004, China; (Q.Y.); (Y.M.); (H.L.)
| | - Haoming Liang
- Guangxi Key Laboratory of Sugarcane Biology, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning 530004, China; (Q.Y.); (Y.M.); (H.L.)
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China;
- Guangxi Key Laboratory of Sugarcane Biology, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning 530004, China; (Q.Y.); (Y.M.); (H.L.)
| | - Jiaorong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China;
- Guangxi Key Laboratory of Sugarcane Biology, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning 530004, China; (Q.Y.); (Y.M.); (H.L.)
| |
Collapse
|
2
|
Barroso M, Puchwein-Schwepcke A, Buettner L, Goebel I, Küchler K, Muntau AC, Delgado A, Garcia-Collazo AM, Martinell M, Barril X, Cubero E, Gersting SW. Use of the Novel Site-Directed Enzyme Enhancement Therapy (SEE-Tx) Drug Discovery Platform to Identify Pharmacological Chaperones for Glutaric Acidemia Type 1. J Med Chem 2024; 67:17087-17100. [PMID: 39312412 PMCID: PMC11472340 DOI: 10.1021/acs.jmedchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Allosteric regulators acting as pharmacological chaperones hold promise for innovative therapeutics since they target noncatalytic sites and stabilize the folded protein without competing with the natural substrate, resulting in a net gain of function. Exogenous allosteric regulators are typically more selective than active site inhibitors and can be more potent than competitive inhibitors when the natural substrate levels are high. To identify novel structure-targeted allosteric regulators (STARs) that bind to and stabilize the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH), the computational site-directed enzyme enhancement therapy (SEE-Tx) technology was applied. SEE-Tx is an innovative drug discovery platform with the potential to identify drugs for treating protein misfolding disorders, such as glutaric acidemia type 1 (GA1) disease. Putative allosteric regulators were discovered using structure- and ligand-based virtual screening methods and validated using orthogonal biophysical and biochemical assays. The computational approach presented here could be used to discover allosteric regulators of other protein misfolding disorders.
Collapse
Affiliation(s)
- Madalena Barroso
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexandra Puchwein-Schwepcke
- Department
of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich 80337, Germany
- Department
of Pediatric Neurology and Developmental Medicine, University Children’s Hospital Basel, UKBB, Basel 4031, Switzerland
| | - Lars Buettner
- Pharmaceutical
Development Biologicals, Boehringer Ingelheim
Pharma GmbH & Co. KG, Biberach
an der Riss 88397, Germany
| | - Ingrid Goebel
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Katrin Küchler
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ania C. Muntau
- University
Children’s Hospital, University Medical
Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German
Center
for Child and Adolescent Health (DZKJ), Partner Site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Aida Delgado
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Ana M. Garcia-Collazo
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Marc Martinell
- Minoryx
Therapeutics S.L., Tecno
Campus Mataró-Maresme, Mataró, Barcelona 08302, Spain
| | - Xavier Barril
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Elena Cubero
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Søren W. Gersting
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German
Center
for Child and Adolescent Health (DZKJ), Partner Site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
3
|
Tibelius A, Evers C, Oeser S, Rinke I, Jauch A, Hinderhofer K. Compilation of Genotype and Phenotype Data in GCDH-LOVD for Variant Classification and Further Application. Genes (Basel) 2023; 14:2218. [PMID: 38137040 PMCID: PMC10742628 DOI: 10.3390/genes14122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Glutaric aciduria type 1 (GA-1) is a rare but treatable autosomal-recessive neurometabolic disorder of lysin metabolism caused by biallelic pathogenic variants in glutaryl-CoA dehydrogenase gene (GCDH) that lead to deficiency of GCDH protein. Without treatment, this enzyme defect causes a neurological phenotype characterized by movement disorder and cognitive impairment. Based on a comprehensive literature search, we established a large dataset of GCDH variants using the Leiden Open Variation Database (LOVD) to summarize the known genotypes and the clinical and biochemical phenotypes associated with GA-1. With these data, we developed a GCDH-specific variation classification framework based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. We used this framework to reclassify published variants and to describe their geographic distribution, both of which have practical implications for the molecular genetic diagnosis of GA-1. The freely available GCDH-specific LOVD dataset provides a basis for diagnostic laboratories and researchers to further optimize their knowledge and molecular diagnosis of this rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Katrin Hinderhofer
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|