1
|
Gao Q, Xing Q, Sun Y, Li Z, Gao S. Transposon mutagenesis identifies the sspA-sspB operon as essential for serum resistance and virulence in avian pathogenic Escherichia coli. Vet Microbiol 2025; 301:110345. [PMID: 39721248 DOI: 10.1016/j.vetmic.2024.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Avian pathogenic Escherichia coli (APEC) constitutes a significant threat to poultry health worldwide, causing colibacillosis and inflicting substantial economic losses. The ability to resist serum-mediated killing is a key virulence factor enabling APEC to circumvent the host immune system and establish systemic infection. In this study, we employed mariner-based transposon mutagenesis to generate a mutant library of APEC strain E058 and screened for mutants with reduced serum resistance. We identified a transposon insertion within the sspB gene of the sspA-sspB operon that conferred significantly reduced serum resistance. Targeted gene knockout experiments confirmed that both sspA and sspB contribute to serum resistance, with the double mutant (ΔsspAΔsspB) displaying a more pronounced susceptibility to serum compared to the single gene knockouts (ΔsspA and ΔsspB). Furthermore, in vivo challenge experiments in chickens demonstrated that disruption of the sspA-sspB operon significantly attenuated APEC virulence. Our study also reveals that the sspA-sspB operon plays a role in biofilm formation and promotes intracellular survival within macrophages, suggesting a multifaceted contribution to APEC pathogenesis. These findings highlight the sspA-sspB operon as a promising target for the development of novel therapeutics against APEC infections in poultry.
Collapse
Affiliation(s)
- Qingqing Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China
| | - Qianlong Xing
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China
| | - Yunyan Sun
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China
| | - Zhengliang Li
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China
| | - Song Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
2
|
Samoilova Z, Smirnova G, Sutormina L, Oktyabrsky O. Modulating effects of fodder grasses extracts on antibiotic sensitivity and biofilm production in avian pathogenic Escherichia coli strains. BIOFOULING 2024; 40:816-830. [PMID: 39391921 DOI: 10.1080/08927014.2024.2414222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Extracts of certain fodder grasses may be viewed as powerful agents against infections induced by avian pathogenic Escherichia coli strains. Here we demonstrated ability of Galega orientalis and Rhaponticum carthamoides extracts, alone or in combination with antibiotics, to inhibit growth, viability and biofilm formation in avian pathogenic Escherichia coli strains with different sensitivity to antibiotics and non-pathogenic laboratory strain E. coli BW25113 as well as its mutant derivatives. Modulation of motility and production of extracellular structures in the presence of the extracts correlated with their anti-biofilm effects. Interestingly, an increase in antibacterial action of kanamycin, streptomycin, ciprofloxacin, and cefotaxime on both biofilms and planktonic cultures of the studied strains was observed in the presence of the extracts, including antibiotic resistant APEC strain #45. The extracts alone showed weak prooxidant activity which could contribute to modification of redox-sensitive sites of various regulatory circuits, resulting to synergetic effects in combination with antibiotics.
Collapse
Affiliation(s)
- Zoya Samoilova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| | - Galina Smirnova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| | - Lyubov Sutormina
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| | - Oleg Oktyabrsky
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
3
|
Musa L, Toppi V, Stefanetti V, Spata N, Rapi MC, Grilli G, Addis MF, Di Giacinto G, Franciosini MP, Casagrande Proietti P. High Biofilm-Forming Multidrug-Resistant Salmonella Infantis Strains from the Poultry Production Chain. Antibiotics (Basel) 2024; 13:595. [PMID: 39061277 PMCID: PMC11273867 DOI: 10.3390/antibiotics13070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The ability of Salmonella species to adhere to surfaces and form biofilms, leading to persistent environmental reservoirs, might represent a direct link between environmental contamination and food processing contamination. The purpose of this study was to investigate the biofilm-forming ability of 80 multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica serovar Infantis strains isolated from the broiler food chain production through whole genome sequencing (WGS), PCR, and morphotype association assays. Biofilm formation was quantified by testing the strains at two different temperatures, using 96-well polystyrene plates. The rough and dry colony (rdar) morphotype was assessed visually on Congo red agar (CRA) plates. Based on our results, all tested S. Infantis strains produced biofilm at 22 °C with an rdar morphotype, while at 37 °C, all the isolates tested negative, except one positive. Most isolates (58.75%) exhibited strong biofilm production, while 36.25% showed moderate production. Only 5 out of 80 (6.25%) were weak biofilm producers. WGS analysis showed the presence of the fim cluster (fimADF) and the csg cluster (csgBAC and csgDEFG), also described in S. Typhimurium, which are responsible for fimbriae production. PCR demonstrated the presence of csgD, csgB, and fimA in all 80 S. Infantis strains. To our knowledge, this is the first study comparing the effects of two different temperatures on the biofilm formation capacity of ESBL producing S. Infantis from the broiler production chain. This study highlights that the initial biofilm components, such as curli and cellulose, are specifically expressed at lower temperatures. It is important to emphasize that within the broiler farm, the environmental temperature ranges between 18-22 °C, which is the optimum temperature for in vitro biofilm formation by Salmonella spp. This temperature range facilitates the expression of biofilm-associated genes, contributing to the persistence of S. Infantis in the environment. This complicates biosecurity measures and makes disinfection protocols on the farm and in the production chain more difficult, posing serious public health concerns.
Collapse
Affiliation(s)
- Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
- Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, 00166 Rome, Italy
| | - Noah Spata
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Maria Cristina Rapi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
| | - Guido Grilli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | | | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Patrizia Casagrande Proietti
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| |
Collapse
|
4
|
Long J, Yang C, Liu J, Ma C, Jiao M, Hu H, Xiong J, Zhang Y, Wei W, Yang H, He Y, Zhu M, Yu Y, Fu L, Chen H. Tannic acid inhibits Escherichia coli biofilm formation and underlying molecular mechanisms: Biofilm regulator CsgD. Biomed Pharmacother 2024; 175:116716. [PMID: 38735084 DOI: 10.1016/j.biopha.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.
Collapse
Affiliation(s)
- Jinying Long
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Can Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Maixun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yuandi Yu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lizhi Fu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
5
|
Yan CH, Zhan YF, Chen H, Herman RA, Xu Y, Khurshid M, Gong LC, You S, Wang J. Coupling of gene regulation and carrier modification manipulates bacterial biofilms as robust living catalysts. BIORESOURCE TECHNOLOGY 2024; 399:130604. [PMID: 38499206 DOI: 10.1016/j.biortech.2024.130604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The biofilm of an engineered strain is limited by slow growth and low yield, resulting in an unsatisfactory ability to resist external stress and promote catalytic efficiency. Here, biofilms used as robust living catalysts were manipulated through dual functionalized gene regulation and carrier modification strategies. The results showed that gene overexpression regulates the autoinducer-2 activity, extracellular polymeric substance content and colony behavior of Escherichia coli, and the biofilm yield of csgD overexpressed strains increased by 79.35 % compared to that of the wild type strains (p < 0.05). In addition, the hydrophilicity of polyurethane fibres modified with potassium dichromate increased significantly, and biofilm adhesion increased by 105.80 %. Finally, the isoquercitrin yield in the catalytic reaction of the biofilm reinforced by the csgD overexpression strain and the modified carrier was 247.85 % higher than that of the untreated group. Overall, this study has developed engineered strains biofilm with special functions, providing possibilities for catalytic applications.
Collapse
Affiliation(s)
- Cheng-Hai Yan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yu-Fan Zhan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Huan Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Richard A Herman
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yan Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Lu-Chan Gong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China; Joint Laboratory of Synthetic Biology and Intelligent Biomanufacturing, Jiangsu University of Technology, Changzhou, Jiangsu 213001, PR China.
| |
Collapse
|
6
|
Corcionivoschi N, Balta I, Butucel E, McCleery D, Pet I, Iamandei M, Stef L, Morariu S. Natural Antimicrobial Mixtures Disrupt Attachment and Survival of E. coli and C. jejuni to Non-Organic and Organic Surfaces. Foods 2023; 12:3863. [PMID: 37893756 PMCID: PMC10606629 DOI: 10.3390/foods12203863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The contact and adherence of bacteria to various surfaces has significant consequences on biofilm formation through changes in bacterial surface structures or gene expression with potential ramifications on plant and animal health. Therefore, this study aimed to investigate the effect of organic acid-based mixtures (Ac) on the ability Campylobacter jejuni and Escherichia coli to attach and form biofilm on various surfaces, including plastic, chicken carcass skins, straw bedding, and eggshells. Moreover, we aimed to explore the effect of Ac on the expression of E. coli (luxS, fimC, csgD) and C. jejuni (luxS, flaA, flaB) bacterial genes involved in the attachment and biofilm formation via changes in bacterial surface polysaccharidic structures. Our results show that Ac had a significant effect on the expression of these genes in bacteria either attached to these surfaces or in planktonic cells. Moreover, the significant decrease in bacterial adhesion was coupled with structural changes in bacterial surface polysaccharide profiles, impacting their adhesion and biofilm-forming ability. Essentially, our findings accentuate the potential of natural antimicrobials, such as Ac, in reducing bacterial attachment and biofilm formation across various environments, suggesting promising potential applications in sectors like poultry production and healthcare.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Maria Iamandei
- Research Development Institute for Plant Protection, 013813 Bucharest, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Sorin Morariu
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|