Nikapitiya C, Wasana WP, Jayathilaka EHTT, Jayasinghe JNC, Lee J, De Zoysa M. Plasma-derived exosomes of Edwardsiella piscicida challenged olive flounder (Paralichthys olivaceus): Characterization and miRNA profiling for potential biomarkers screening.
FISH & SHELLFISH IMMUNOLOGY 2025;
156:110034. [PMID:
39571633 DOI:
10.1016/j.fsi.2024.110034]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Exosomes are released from multiple cell types as part of their normal physiology as well as during acquired abnormalities. In this study, we investigated the effect of pathogenic Edwardsiella piscicida infection on olive flounder (Paralichthys olivaceus) exosomes at morphometric, physicochemical, and molecular levels. Unique cup-shaped exosomes were isolated from the plasma of non-infected (PBS-Exo) and E. piscicida experimentally challenged (Ep-Exo) olive flounder using ultracentrifugation. The average particle size, concentration, and zeta potential were 150.9 ± 6.9 nm, 5.67 × 1010 particles/mL, and -25.6 ± 1.36 mV for PBS-Exo while 138.7 ± 1.9 nm, 1.22 × 1011 particles/mL, and -35 ± 1.82 mV for Ep-Exo, respectively. Expression of tetraspanin markers (CD81, CD9, and CD63) confirmed the presence of olive flounder exosomes. Differentially expressed (DE) known (9) and novel (29) miRNAs (log2 fold change ≥1; p < 0.05) were identified in the Ep-Exo that could be potential as diagnostic biomarkers for the infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the predicted target genes of the DE miRNAs were highly enriched in metabolic and immune roles. Both PBS-Exo and Ep-Exo were non-toxic in vitro (up to 100 μg/mL) and in vivo (up to 400 μg/mL). Compared to the vehicle, PBS-Exo at 50 μg/mL induced Nf-kB (>1.50-fold) while at 100 μg/mL, Il8, Il10, Nf-kB, P53, and Inf were induced (>1.50-fold) in fathead minnow cells (FHMs). This suggests that the PBS-Exo contains molecules that moderately stimulate gene expression. In the future, validating the exact olive flounder immune response target genes that interact with DE miRNAs in Ep-Exo will be crucial for investigating the host-pathogen interactions, immune defense mechanisms, and therapeutic targets for olive flounder against E. piscicida infection.
Collapse