1
|
Ye Y, Wan L, Hu J, Li X, Zhang K. Combined single-cell RNA sequencing and mendelian randomization to identify biomarkers associated with necrotic apoptosis in intervertebral disc degeneration. Spine J 2025; 25:165-183. [PMID: 39332686 DOI: 10.1016/j.spinee.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is associated with back pain; back pain is a world-wide contributor to poor quality of life, while necroptosis has the characteristics of necroptosis and apoptosis, however, its role in IDD is still unclear. Therefore, the aim of this study was to identify biomarkers associated with necroptosis in IDD. PURPOSE To explore biomarkers associated with necroptosis in IDD, reveal the pathogenesis of IDD, as well as provide new directions for the diagnosis and treatment of this disease. STUDY DESIGN/SETTINGS Retrospective cohort study. Our study employs scRNA-seq coupled with MR analysis to investigate the causal relationship between necroptosis and IDD, laying a foundational groundwork for unveiling the intricate pathogenic mechanisms of this condition. METHODS Data quality control and normalisation was executed in single-cell dataset, GSE205535. Then, different cell types were obtained by cell annotation through marker genes. Subsequently, chi-square test was employed to assess the distribution difference of different cell types between IDD and control to screen key cells. AUCell was applied to calculate necroptosis-related genes (NRGs) scores of all cell types, further key cells were divided into high and low NRGs groups according to the median AUC scores of different cell types. Afterwards, the differentially expressed genes (DEGs) within the 2 score groups were screened. Then, the genes that had causal relationship with IDD were selected as biomarkers by univariate and multivariate Mendelian randomization (MR) analysis. Finally, the expression of biomarkers in different cell types and pseudo-time analysis was analyzed separately. RESULTS In GSE205535, 16 different cell populations identified by UMAP cluster analysis were further annotated to 8 cell types using maker genes. Afterwards, 53 DEGs were screened between the high and low NRGs groups. In addition, 9 genes with causal relationship with IDD were obtained by univariate MR analysis, further multivariate MR analysis proved that NT5E and TMEM158 had a direct causal relationship with IDD, which were used as biomarkers in this study. This study not only found that the expression levels of NT5E and TMEM158 were higher in IDD group, but also found that fibrochondrocytes and inflammatory chondrocytes were the key cells of NT5E and TMEM158, respectively. In the end, the biomarkers had the same expression trend in the quasi-time series, and both of them from high to low and then increased. CONCLUSIONS NT5E and TMEM158, as biomarkers of necroptotic apoptotic IDD, were causally associated with IDD. CLINICAL SIGNIFICANCE The understanding of chondrocytes as key cells provides new perspectives for deeper elucidation of the pathogenesis of IDD, improved diagnostic methods, and the development of more effective treatments. These findings are expected to provide a more accurate and personalised approach to clinical diagnosis and treatment, thereby improving the prognosis and quality of life of patients with IDD.
Collapse
Affiliation(s)
- Yi Ye
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Lun Wan
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Jiang Hu
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Xiaoxue Li
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China
| | - Kun Zhang
- Orthopaedic Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32# W. Sec 2, 1st Ring Rd. Sichuan, 610072, China.
| |
Collapse
|
2
|
Zhou D, Lv J, Mei Y, Song C, Liu T, Cheng K, Cai W, Gao S, Zhou Y, Xiong Z, Liu Z. Analysis of the role of PANoptosis in intervertebral disk degeneration via integrated bioinformatics analysis and experimental validation. Int Immunopharmacol 2024; 143:113528. [PMID: 39556889 DOI: 10.1016/j.intimp.2024.113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/06/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
Intervertebral disc degeneration (IVDD) is an age-related orthopedic degenerative disease characterized by recurrent episodes of lower back pain, and death of nucleus pulposus cells (NPCs) has been identified as a key factor in the pathophysiological process of IVDD episodes. Recent studies have shown that " PANapoptosis ", a newly characterized form of cell death, has emerged as an important factor contributing to the development of several diseases. However, studies on the specific mechanisms of its role in the development of IVDD are lacking. The aim of this study was to explore the characterization of PANoptosis in IVDD and to identify potential biomarkers and therapeutic targets as well as therapeutic agents. We constructed a PANoptosis gene set, based on the GEO database, and used weighted gene co-expression network analysis (WGCNA) and differential expression analysis to identify PANoptosis genes associated with the pathophysiological process of IVDD episodes by Gene Set Enrichment Analysis (GSEA), immune infiltration, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the underlying biological mechanisms of PANoptosis and its role in IVDD. Comprehensive bioinformatics analysis showed that seven key genes (APAF1, MEFV, NLRP3, TNF, GSDMD, AIM2, and IRF1) of PANoptosis have good diagnostic value. In addition, we predicted potential therapeutic agents, among which Andrographolide (AG) had the highest correlation and binding affinity to the target. Finally, we performed Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) assays, molecular docking, and cell flow to validate the expression of PANoptosis-related genes and the therapeutic effect of AG. We further divided SD rats into sham-operated, IVDD model, and Andrographolide-treated groups, administered AG at 50 mg/kg via gavage for one month, and observed significant therapeutic effects through HE staining. This study identifies key PANoptosis genes and demonstrates the potential of AG as a therapeutic agent for IVDD.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Siling Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yang Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zhongwei Xiong
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China; Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Lv Y, Du J, Xiong H, Feng L, Zhang D, Zhou H, Feng S. Machine learning-based analysis of programmed cell death types and key genes in intervertebral disc degeneration. Apoptosis 2024:10.1007/s10495-024-02047-z. [PMID: 39633111 DOI: 10.1007/s10495-024-02047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Intervertebral disc degeneration (IVDD) is intricately associated with various forms of programmed cell death (PCD). Identifying key PCD types and associated genes is essential for understanding the molecular mechanisms underlying IVDD and discovering potential therapeutic targets. This study aimed to elucidate core PCD types, related genes, and potential drug interactions in IVDD using comprehensive bioinformatic and experimental approaches. Using datasets GSE167199, GSE176205, GSE34095, GSE56081, and GSE70362, relevant gene expression and clinical data were analyzed. Differential expression gene (DEG) analysis identified upregulated genes linked to 15 PCD types. Gene Set Variation Analysis (GSVA) was employed to pinpoint key PCD types contributing to disc degeneration. Core genes were identified through machine learning techniques, while immune infiltration and single-cell analysis helped identify apoptosis-related cell types. Molecular docking, along with in vivo and in vitro experiments using a murine IVDD model, validated potential drug interactions. The results identified apoptosis, autophagy, ferroptosis, and necroptosis as key PCD types in IVDD. A gene module associated with apoptosis showed a strong correlation with the severity of disc degeneration, revealing 34 central genes in the gene network. Drug screening identified Glibenclamide as effectively interacting with PDCD6 and UBE2K. Subsequent in vitro and in vivo experiments demonstrated that Glibenclamide reduced apoptosis and delayed disc degeneration progression. This study provides a comprehensive bioinformatics analysis of PCD in IVDD, identifying four primary PCD types contributing to the disease's progression. The findings offer novel insights into the molecular pathology of disc degeneration and suggest promising therapeutic strategies for future treatment development.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Jiawei Du
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Haoning Xiong
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Lei Feng
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Di Zhang
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University Centre for Orthopaedics, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Center for Reproductive Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University Centre for Orthopaedics, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Cheeloo College of Medicine, The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
4
|
Zhao X, Wang Q, Wang S, Wang W, Chen X, Lu S. A novel multi-omics approach for identifying key genes in intervertebral disc degeneration. SLAS Technol 2024; 29:100223. [PMID: 39528158 DOI: 10.1016/j.slast.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Many different cell types and complex molecular pathways are involved in intervertebral disc degeneration (IDD). We used a multi-omics approach combining single-cell RNA sequencing (scRNA-seq), differential gene expression analysis, and Mendelian randomization (MR) to clarify the underlying genetic architecture of IDD. We identified 1,164 differentially expressed genes (DEGs) across four important cell types associated with IDD using publicly available single-cell datasets. A thorough gene network analysis identified 122 genes that may be connected to programmed cell death (PCD), a crucial route in the etiology of IDD. SLC40A1, PTGS2, and GABARAPL1 have been identified as noteworthy regulatory genes that may impede the advancement of IDD. Furthermore, distinct cellular subpopulations and dynamic gene expression patterns were revealed by functional enrichment analysis and pseudo-temporal ordering of chondrocytes. Our results highlight the therapeutic potential of GABARAPL1, PTGS2, and SLC40A1 targeting in the treatment of IDD.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qijun Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuaikang Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
5
|
Sun H, Guo J, Xiong Z, Zhuang Y, Ning X, Liu M. Targeting nucleus pulposus cell death in the treatment of intervertebral disc degeneration. JOR Spine 2024; 7:e70011. [PMID: 39703198 PMCID: PMC11655182 DOI: 10.1002/jsp2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a progressive age-related disorder characterized by the reduction in the number of nucleus pulposus cells (NPCs) and degradation of extracellular matrix (ECM), thereby leading to chronic pain and disability. The pathogenesis of IDD is multifaceted, and current therapeutic strategies remain limited. The nucleus pulposus (NP), primarily composed of NPCs, proteoglycans, and type II collagen, constitutes essential components for maintaining intervertebral disc (IVD) function and spinal motion. The disturbed homeostasis of NPCs is closely associated with IDD. Accumulating evidence increasingly suggests the crucial role of programmed cell death (PCD) in regulating the homeostasis of NPCs. Aims This review aimed to elucidate various forms of PCD and their respective roles in IDD, and investigate diverse strategies targeting the cell death of NPCs for IDD treatment. Materials & Methods We collected the relevant literature regarding PCD and their roles in the development of IDD. Subsequently, we comprehensively summarized the intricate association between PCD and IDD, and also explored the potential and application of cell therapy and traditional Chinese medicine (TCM) in the prevention and treatment of IDD. Results Current literature indicated that the PCD of NPCs was closely associated with the pathogenesis of IDD. Additionally, the development of targeted pharmaceuticals based on the mechanisms of PCD could effectively impede the loss of NPCs. Conclusion This review demonstrated that targeting the PCD of NPCs may be a promising strategy for the treatment of IDD.
Collapse
Affiliation(s)
- Hong Sun
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jiajie Guo
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Zhilin Xiong
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Yong Zhuang
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xu Ning
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Miao Liu
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
6
|
Zhang Y, Tao H, Zhang L, Li X, Shi Y, Sun W, Chen W, Zhao Y, Wang L, Yang X, Gu C. Battling pain from osteoarthritis: causing novel cell death. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39463202 DOI: 10.3724/abbs.2024189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Osteoarthritis (OA) is a significant contributor to pain and disability worldwide. Pain is the main complaint of OA patients attending the clinic and has a large impact on their quality of life and economic standards. However, existing treatments for OA-related pain have not been shown to achieve good relief. The main focus is on preventing and slowing the progression of OA so that the problem of OA pain can be resolved. Pain caused by OA is complex, with the nature, location, duration, and intensity of pain changing as the disease progresses. Previous research has highlighted the role of various forms of cell death, such as apoptosis and necrosis, in the progression of pain in OA. Emerging studies have identified additional forms of novel cell death, such as pyroptosis, ferroptosis, and necroptosis that are linked to pain in OA. Different types of cell death contribute to tissue damage in OA by impacting inflammatory responses, reactive oxygen species (ROS) production, and calcium ion levels, ultimately leading to the development of pain. Evidence suggests that targeting novel types of cell death could help alleviate pain in OA patients. This review delves into the complex mechanisms of OA pain, explores the relationship between different modes of novel cell death and pain, and proposes novel cell death as a viable strategy for the treatment of these conditions, with the goal of providing scientific references for the development of future OA pain treatments and drugs.
Collapse
Affiliation(s)
- Yuheng Zhang
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 226000, China
| | - Liyuan Zhang
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| | - Xueyan Li
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| | - Yi Shi
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| | - Wen Sun
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| | - Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| | - Yuhu Zhao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 226000, China
| | - Liangliang Wang
- Department of Orthopedics, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| | - Chengyong Gu
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 226000, China
| |
Collapse
|
7
|
Wang J, Zhang Y, Huang Y, Hao Z, Shi G, Guo L, Chang C, Li J. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio 2024; 28:101251. [PMID: 39318370 PMCID: PMC11421353 DOI: 10.1016/j.mtbio.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the "four core factors", hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
8
|
Khaleque MA, Kim JH, Tanvir MAH, Park JB, Kim YY. Significance of Necroptosis in Cartilage Degeneration. Biomolecules 2024; 14:1192. [PMID: 39334958 PMCID: PMC11429838 DOI: 10.3390/biom14091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cartilage, a critical tissue for joint function, often degenerates due to osteoarthritis (OA), rheumatoid arthritis (RA), and trauma. Recent research underscores necroptosis, a regulated form of necrosis, as a key player in cartilage degradation. Unlike apoptosis, necroptosis triggers robust inflammatory responses, exacerbating tissue damage. Key mediators such as receptor-interacting serine/threonine-protein kinase-1 (RIPK1), receptor-interacting serine/threonine-protein kinase-3(RIPK3), and mixed lineage kinase domain-like (MLKL) are pivotal in this process. Studies reveal necroptosis contributes significantly to OA and RA pathophysiology, where elevated RIPK3 and associated proteins drive cartilage degradation. Targeting necroptotic pathways shows promise; inhibitors like Necrostatin-1 (Nec-1), GSK'872, and Necrosulfonamide (NSA) reduce necroptotic cell death, offering potential therapeutic avenues. Additionally, autophagy's role in mitigating necroptosis-induced damage highlights the need for comprehensive strategies addressing multiple pathways. Despite these insights, further research is essential to fully understand necroptosis' mechanisms and develop effective treatments. This review synthesizes current knowledge on necroptosis in cartilage degeneration, aiming to inform novel therapeutic approaches for OA, RA, and trauma.
Collapse
Affiliation(s)
- Md Abdul Khaleque
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jea-Hoon Kim
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Md Amit Hasan Tanvir
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Beom Park
- Department of Orthopedic Surgery, Uijeongbu Saint Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Khaleque MA, Kim JH, Lee HH, Kim GH, You WY, Lee WJ, Kim YY. Comparative Analysis of Autophagy and Apoptosis in Disc Degeneration: Understanding the Dynamics of Temporary-Compression-Induced Early Autophagy and Sustained-Compression-Triggered Apoptosis. Int J Mol Sci 2024; 25:2352. [PMID: 38397026 PMCID: PMC10889391 DOI: 10.3390/ijms25042352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this study was to investigate the initiation of autophagy activation and apoptosis in nucleus pulposus cells under temporary compression (TC) and sustained compression (SC) to identify ideal research approaches in intervertebral disc degeneration. Various techniques were used: radiography (X-ray), magnetic resonance imaging (MRI), transmission electron microscope (TEM), H&E staining, Masson's trichrome staining, immunohistochemistry (IHC) (LC3, beclin-1, and cleaved caspase-3), and real-time polymerase chain reaction (RT-qPCR) for autophagy-related (beclin-1, LC3, and P62) and apoptosis-related (caspase-3 and PARP) gene expression analysis. X-ray and MRI revealed varying degrees of disc degeneration, ranging from moderate to severe in both groups. The severity was directly linked to compression duration, with SC resulting in notably severe central NP cell degeneration. Surprisingly, TC also caused similar, though less severe, degeneration. Elevated expression of LC3 and beclin-1 was identified after 6 weeks, but it notably declined after 12 weeks. Central NP cells in both groups exhibited increased expression of cleaved caspase-3 that was positively correlated with the duration of SC. TC showed fewer apoptotic markers compared to SC. LC3, beclin-1, and P62 mRNA expression peaked after 6 weeks and declined after 12 weeks in both groups. Cleaved caspase-3 and PARP expression peaked in SC, positively correlating with longer compression duration, while TC showed lower levels of apoptosis gene expression. Furthermore, TEM results revealed different events of the autophagic degradation process after 2 weeks of compression. TCmay be ideal for studying early triggered autophagy-mediated degeneration, while SC may be ideal for studying late or slower-triggered apoptosis-mediated degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.K.); (J.-H.K.); (H.-H.L.); (G.-H.K.); (W.-Y.Y.); (W.-J.L.)
| |
Collapse
|