1
|
Ramdhony K, Puchooa D, Faraj TK, Alrefaei AF, Li J, Jeewon R. A polyphasic approach in the identification and biochemical characterization of Dunaliella tertiolecta with biodiesel potential from a saltern in Mauritius. PeerJ 2024; 12:e18325. [PMID: 39677951 PMCID: PMC11646422 DOI: 10.7717/peerj.18325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/25/2024] [Indexed: 12/17/2024] Open
Abstract
Bioprospecting robust and oleaginous strain is crucial for the commercialization of microalgae-based biodiesel. In this study, a microalgal strain SCH18 was isolated from a solar saltern located in Mauritius. This isolate was identified as Dunaliella tertiolecta based on a polyphasic approach that combined molecular, physiological, and morphological analyses. Furthermore, the effect of different salinities on the biochemical composition and fatty acid profile of this microalga was investigated to explore its potential in producing biodiesel. Results from the growth studies showed that salinity of 1.0 M NaCl was optimal for achieving a high growth rate. Under this salt concentration, the growth rate and the doubling time were calculated as 0.39 ± 0.003 day-1 and 1.79 ± 0.01 days, respectively. In terms of biochemical composition, a substantial amount of carbohydrate (42.02 ± 5.20%), moderate amount of protein (30.35 ± 0.18%) and a low lipid content (17.81 ± 2.4%) were obtained under optimal NaCl concentration. The fatty acid analysis indicated the presence of palmitic acid, stearic acid, palmitoleic acid, oleic acid, linoleic acid, gamma, and alpha-linolenic acids, which are suitable for biodiesel synthesis. The predicted biodiesel properties were in accordance with the standard of ASTM 6751, indicating that the microalgal isolate D. tertiolecta SCH18 is a potential candidate for use in biodiesel production.
Collapse
Affiliation(s)
- Kamlesh Ramdhony
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
| | - Daneshwar Puchooa
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
| | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - JunFu Li
- Kunming Institute of Botany, Chinese Science Academy, Kunming, Yunnan, China
| | - Rajesh Jeewon
- Kunming Institute of Botany, Chinese Science Academy, Kunming, Yunnan, China
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
2
|
Keil L, Qoura FM, Breitsameter JM, Rieger B, Garbe D, Brück TB. Evaluation of Chemical and Physical Triggers for Enhanced Photosynthetic Glycerol Production in Different Dunaliella Isolates. Microorganisms 2024; 12:1318. [PMID: 39065087 PMCID: PMC11278730 DOI: 10.3390/microorganisms12071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The salt-tolerant marine microalgae Dunaliella tertiolecta is reported to generate significant amounts of intracellular glycerol as an osmoprotectant under high salt conditions. This study highlights the phylogenetic distribution and comparative glycerol biosynthesis of seven new Dunaliella isolates compared to a D. tertiolecta reference strain. Phylogenetic analysis indicates that all Dunaliella isolates are newly discovered and do not relate to the D. tertiolecta reference. Several studies have identified light color and intensity and salt concentration alone as the most inducing factors impacting glycerol productivity. This study aims to optimize glycerol production by investigating these described factors singularly and in combination to improve the glycerol product titer. Glycerol production data indicate that cultivation with white light of an intensity between 500 and 2000 μmol m-2 s-1 as opposed to 100 μmol m-2 s-1 achieves higher biomass and thereby higher glycerol titers for all our tested Dunaliella strains. Moreover, applying higher light intensity in a cultivation of 1.5 M NaCl and an increase to 3 M NaCl resulted in hyperosmotic stress conditions, providing the highest glycerol titer. Under these optimal light intensity and salt conditions, the glycerol titer of D. tertiolecta could be doubled to 0.79 mg mL-1 in comparison to 100 μmol m-2 s-1 and salt stress to 2 M NaCl, and was higher compared to singularly optimized conditions. Furthermore, under the same conditions, glycerol extracts from new Dunaliella isolates did provide up to 0.94 mg mL-1. This highly pure algae-glycerol obtained under optimal production conditions can find widespread applications, e.g., in the pharmaceutical industry or the production of sustainable carbon fibers.
Collapse
Affiliation(s)
- Linda Keil
- Werner Siemens Laboratory of Synthetic Biotechnology, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany;
| | - Farah Mitry Qoura
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany;
| | - Jonas Martin Breitsameter
- Wacker-Laboratory of Macromolecular Chemistry, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany; (J.M.B.); (B.R.)
| | - Bernhard Rieger
- Wacker-Laboratory of Macromolecular Chemistry, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany; (J.M.B.); (B.R.)
| | - Daniel Garbe
- Werner Siemens Laboratory of Synthetic Biotechnology, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany;
| | - Thomas Bartholomäus Brück
- Werner Siemens Laboratory of Synthetic Biotechnology, TUM-School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany;
| |
Collapse
|
3
|
Wang Q, Chen X, Meng Y, Niu M, Jia Y, Huang L, Ma W, Liang C, Li Z, Zhao L, Dang Z. The Potential Role of Genic-SSRs in Driving Ecological Adaptation Diversity in Caragana Plants. Int J Mol Sci 2024; 25:2084. [PMID: 38396759 PMCID: PMC10888960 DOI: 10.3390/ijms25042084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Caragana, a xerophytic shrub genus widely distributed in northern China, exhibits distinctive geographical substitution patterns and ecological adaptation diversity. This study employed transcriptome sequencing technology to investigate 12 Caragana species, aiming to explore genic-SSR variations in the Caragana transcriptome and identify their role as a driving force for environmental adaptation within the genus. A total of 3666 polymorphic genic-SSRs were identified across different species. The impact of these variations on the expression of related genes was analyzed, revealing a significant linear correlation (p < 0.05) between the length variation of 264 polymorphic genic-SSRs and the expression of associated genes. Additionally, 2424 polymorphic genic-SSRs were located in differentially expressed genes among Caragana species. Through weighted gene co-expression network analysis, the expressions of these genes were correlated with 19 climatic factors and 16 plant functional traits in various habitats. This approach facilitated the identification of biological processes associated with habitat adaptations in the studied Caragana species. Fifty-five core genes related to functional traits and climatic factors were identified, including various transcription factors such as MYB, TCP, ARF, and structural proteins like HSP90, elongation factor TS, and HECT. The roles of these genes in the ecological adaptation diversity of Caragana were discussed. Our study identified specific genomic components and genes in Caragana plants responsive to heterogeneous habitats. The results contribute to advancements in the molecular understanding of their ecological adaptation, lay a foundation for the conservation and development of Caragana germplasm resources, and provide a scientific basis for plant adaptation to global climate change.
Collapse
Affiliation(s)
- Qinglang Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Xing’er Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Miaomiao Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Yuanyuan Jia
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Lei Huang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Zhiyong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| |
Collapse
|