1
|
Aufy M, Abd-Elkareem M, Mustafic M, Abdel-Maksoud MA, Hakamy A, Baresova V, Alfuraydi AA, Ashry M, Lubec J, Amer AS, Studenik CR, Hussein AM, Kotob MH. Age-related lung changes linked to altered lysosomal protease profile, histology, and ultrastructure. PLoS One 2024; 19:e0311760. [PMID: 39705219 DOI: 10.1371/journal.pone.0311760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/24/2024] [Indexed: 12/22/2024] Open
Abstract
INTRODUCTION The aging process is intricately linked to alterations in cellular and tissue structures, with the respiratory system being particularly susceptible to age-related changes. Therefore, this study aimed to profile the activity of proteases using activity-based probes in lung tissues of old and young rats, focusing on the expression levels of different, in particular cathepsins G and X and matrix Metalloproteinases (MMPs). Additionally, the impact on extracellular matrix (ECM) components, particularly fibronectin, in relation to age-related histological and ultrastructural changes in lung tissues was investigated. MATERIALS AND METHODS Lung tissues from old and young rats were subjected to activity-based probe profiling to assess the activity of different proteases. Expression levels of cathepsins G and X were quantified, and zymography was performed to evaluate matrix metalloproteinases activity. Furthermore, ECM components, specifically fibronectin, were examined for signs of degradation in the old lung tissues compared to the young ones. Moreover, histological, immunohistochemical and ultrastructural assessments of old and young lung tissue were also conducted. RESULTS Our results showed that the expression levels of cathepsins G and X were notably higher in old rat lung tissues in contrast to those in young rat lung tissues. Zymography analysis revealed elevated MMP activity in the old lung tissues compared to the young ones. Particularly, significant degradation of fibronectin, an essential ECM component, was observed in the old lung tissues. Numerous histological and ultrastructural alterations were observed in old lung tissues compared to young lung tissues. DISCUSSION AND CONCLUSION The findings indicate an age-related upregulation of cathepsins G and X along with heightened MMP activity in old rat lung tissues, potentially contributing to the degradation of fibronectin within the ECM. These alterations highlight potential mechanisms underlying age-associated changes in lung tissue integrity and provide insights into protease-mediated ECM remodeling in the context of aging lungs.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissue, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Medina Mustafic
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Veronika Baresova
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Faculty of Pharmacy in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Ashry
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ayman S Amer
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Christian R Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed H Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
3
|
Abdel-Mawgod S, Zanaty A, Elhusseiny M, Said D, Samir A, Elsayed MM, Mahana O, Said M, Hussein AM, Hassan HM, Selim A, Shahien MA, Selim K. Genetic heterogeneity of chicken anemia virus isolated in selected Egyptian provinces as a preliminary investigation. Front Vet Sci 2024; 11:1362219. [PMID: 38840626 PMCID: PMC11150715 DOI: 10.3389/fvets.2024.1362219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Chicken anemia virus (CAV) is a widespread and economically significant pathogen in the poultry industry. In this study 110 samples were collected from various poultry farms in selected Egyptian provinces during 2021-2022 and were tested against CAV by Polymerase Chain Reaction (PCR), revealing 22 positive samples with 20% incidence rate. Full sequence analysis of five selected CAV strains revealed genetic variations in VP1, VP2, and VP3 genes. Phylogenetic analysis grouped the Egyptian strains with reference viruses, mainly in group II, while vaccines like Del-Rose were categorized in group III. Recombination events were detected between an Egyptian strain (genotype II) and the Del-Rose vaccine strain (genotype III), indicating potential recombination between live vaccine strains and field isolates. To evaluate pathogenicity, one Egyptian isolate (F883-2022 CAV) and Del-Rose vaccine were tested in Specific Pathogen Free (SPF) chicks. Chicks in the positive group displayed clinical symptoms, including weakness and stunted growth, with postmortem findings consistent with CAV infection. The vaccine group showed milder symptoms and less severe postmortem changes. This study provides important insights into the genetic diversity of CAV in selected Egyptian poultry farms showing recombination event between field strain and vaccine strains, highlighting the need for advanced vaccination programs, especially for broilers.
Collapse
Affiliation(s)
- Sara Abdel-Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Moataz M. Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Osama Mahana
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mahmoud Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Heba M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdullah Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Momtaz A. Shahien
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Karim Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
4
|
Li H, Liang B, Gao X, Peng Y, Liu Q, Qiu L, Lin J. Cathepsin B-Activated PET Tracer for In Vivo Tumor Imaging. Mol Pharm 2024; 21:1382-1389. [PMID: 38372213 DOI: 10.1021/acs.molpharmaceut.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cathepsin B, a lysosomal protease, is considered as a crucial biomarker for tumor diagnosis and treatment as it is overexpressed in numerous cancers. A stimulus-responsive SF scaffold has been reported to detect the activity of a variety of tumor-associated enzymes. In this work, a small-molecule PET tracer ([68Ga]NOTA-SF-CV) was developed by combining an SF scaffold with a cathepsin B-specific recognition substrate Cit-Val. Upon activation by cathepsin B, [68Ga]NOTA-SF-CV could form the cyclization product in a reduction environment, resulting in reduced hydrophilicity. This unique property could effectively prevent exocytosis of the tracer in cathepsin B-overexpressing tumor cells, leading to prolonged retention and amplified PET imaging signal. Moreover, [68Ga]NOTA-SF-CV had great targeting specificity to cathepsin B. In vivo microPET imaging results showed that [68Ga]NOTA-SF-CV was able to effectively visualize the expression level of cathepsin B in various tumors. Hence, [68Ga]NOTA-SF-CV may be served as a potential tracer for diagnosing cathepsin B-related diseases.
Collapse
Affiliation(s)
- Huirong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Beibei Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaoqing Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
5
|
Abdelaziz RF, Hussein AM, Kotob MH, Weiss C, Chelminski K, Stojanovic T, Studenik CR, Aufy M. Enhancement of Radiation Sensitivity by Cathepsin L Suppression in Colon Carcinoma Cells. Int J Mol Sci 2023; 24:17106. [PMID: 38069428 PMCID: PMC10707098 DOI: 10.3390/ijms242317106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the main causes of death globally. Radiotherapy/Radiation therapy (RT) is one of the most common and effective cancer treatments. RT utilizes high-energy radiation to damage the DNA of cancer cells, leading to their death or impairing their proliferation. However, radiation resistance remains a significant challenge in cancer treatment, limiting its efficacy. Emerging evidence suggests that cathepsin L (cath L) contributes to radiation resistance through multiple mechanisms. In this study, we investigated the role of cath L, a member of the cysteine cathepsins (caths) in radiation sensitivity, and the potential reduction in radiation resistance by using the specific cath L inhibitor (Z-FY(tBu)DMK) or by knocking out cath L with CRISPR/Cas9 in colon carcinoma cells (caco-2). Cells were treated with different doses of radiation (2, 4, 6, 8, and 10), dose rate 3 Gy/min. In addition, the study conducted protein expression analysis by western blot and immunofluorescence assay, cytotoxicity MTT, and apoptosis assays. The results demonstrated that cath L was upregulated in response to radiation treatment, compared to non-irradiated cells. In addition, inhibiting or knocking out cath L led to increased radiosensitivity in contrast to the negative control group. This may indicate a reduced ability of cancer cells to recover from radiation-induced DNA damage, resulting in enhanced cell death. These findings highlight the possibility of targeting cath L as a therapeutic strategy to enhance the effectiveness of RT. Further studies are needed to elucidate the underlying molecular mechanisms and to assess the translational implications of cath L knockout in clinical settings. Ultimately, these findings may contribute to the development of novel treatment approaches for improving outcomes of RT in cancer patients.
Collapse
Affiliation(s)
- Ramadan F. Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
- Division of Human Health, International Atomic Energy Agency, Wagramer Str. 5, 1400 Vienna, Austria;
| | - Ahmed M. Hussein
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Mohamed H. Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Christina Weiss
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Krzysztof Chelminski
- Division of Human Health, International Atomic Energy Agency, Wagramer Str. 5, 1400 Vienna, Austria;
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| |
Collapse
|