1
|
Cantabrana B, Peña-Iglesias P, Castro-Estrada P, Suárez L, Bordallo J, Barreiro-Alonso E, Sánchez M. Dietary intake of polyamines in a Spanish adult population: Age-dependent correlation with Healthy Eating Index and Dietary Inflammatory Index scores. Nutrition 2025; 130:112608. [PMID: 39602838 DOI: 10.1016/j.nut.2024.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES A healthy and balanced diet is crucial to maintaining optimal health. Understanding the benefits of different food components is essential. The polyamine spermidine is linked to age-related disease protection, but daily intakes and whether these vary with age are unknown. This study aimed to determine polyamine intake in a Mediterranean diet population and its association with participants' age and Healthy Eating Index (HEI) and Dietary Inflammatory Index (DII) scores. METHODS A database was created with references concerning polyamine content in foods to determine the daily intake of foods frequently consumed by 203 participants (84 males and 119 females), ages 18 to 90 y, using a nutritional survey (VioScreen) that includes HEI and DII scores. RESULTS The participants' characteristics were as reported in the corresponding 2020 Spanish nutritional survey. Two-thirds demonstrated moderate to high adherence to the Mediterranean diet. The mean HEI score was 74.45 (out of 100), and the mean DII was -1.94 (anti-inflammatory). The median intake of polyamines was 45.59 mg/d/person (mean, 46.89 mg/d/person, 410.57 µmol/d/person), without sex differences. After normalizing the intake per kilocalorie, the Kruskal-Wallis test showed significant differences among age groups for total polyamines ingested, putrescine, and spermidine. The intake of putrescine and spermidine was significantly higher in the 60 to 69 age group compared with the 24 to 59 and 18 to 23 age groups, respectively. HEI scores were positively correlated with polyamine intake, whereas DII scores were negatively correlated. CONCLUSIONS Polyamine intake was higher than reported in other populations, did not decrease based on age, and was associated with healthy eating and anti-inflammatory foods.
Collapse
Affiliation(s)
- Begoña Cantabrana
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Peña-Iglesias
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | - Lorena Suárez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Javier Bordallo
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Eva Barreiro-Alonso
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Servicio de Digestivo, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Manuel Sánchez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.
| |
Collapse
|
2
|
Uemura T, Terui Y. Special Issue "Polyamines in Aging and Disease". Int J Mol Sci 2024; 25:11960. [PMID: 39596032 PMCID: PMC11593924 DOI: 10.3390/ijms252211960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Polyamines are bioactive amines found in almost all living organisms and are essential for normal cellular functions [...].
Collapse
Affiliation(s)
- Takeshi Uemura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Japan
| | - Yusuke Terui
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara 324-8501, Japan;
| |
Collapse
|
3
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406668. [PMID: 39231358 PMCID: PMC11538647 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jiaqing Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yang Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Siyi Wu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xu Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haoran Chen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zhewen Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haitao Yuan
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Feng Shen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Fangfang Zhu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jian Ye
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
4
|
Chu S, Chan AKY, Chu CH. Polyamines in Dysbiotic Oral Conditions of Older Adults: A Scoping Review. Int J Mol Sci 2024; 25:10596. [PMID: 39408925 PMCID: PMC11477423 DOI: 10.3390/ijms251910596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Polyamines modulate cellular proliferation and function. Their dysregulation results in inflammatory and oncological repercussions. This study aims to map the current literature and provide an overview of polyamines in dysbiotic oral conditions among older adults. English publications indexed in MEDLINE, Scopus, and Web of Science from January 2000 to May 2024 were screened. Eligibility criteria included clinical and laboratory studies using samples from adults aged 65 or above. This scoping review identified 2725 publications and included 19 publications. Ten studies detected that older adults with oral carcinoma had increased levels of polyamines such as spermidine in saliva and tumour-affected tissues. Eight studies reported older adults suffering from periodontal infection had increased levels of polyamines such as putrescine in saliva, gingival crevicular fluid, and biofilm from the gingival crevice. Two studies showed polyamine levels could reflect the success of periodontal therapy. Three studies found older adults with halitosis had increased levels of polyamines such as cadaverine in saliva and tongue biofilm. Polyamines were suggested as biomarkers for these oral conditions. In conclusion, certain polyamine levels are elevated in older adults with oral cancer, periodontal infections, and halitosis. Polyamines may be used as a simple and non-invasive tool to detect dysbiotic oral conditions and monitor treatment progress in older adults (Open Science Framework registration).
Collapse
Affiliation(s)
| | | | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
5
|
Singh P, Choi JY, Wang W, T Lam T, Lechner P, Vanderwal CD, Pou S, Nilsen A, Ben Mamoun C. A fluorescence-based assay for measuring polyamine biosynthesis aminopropyl transferase-mediated catalysis. J Biol Chem 2024; 300:107832. [PMID: 39342998 PMCID: PMC11541840 DOI: 10.1016/j.jbc.2024.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), which are promising targets for antimicrobial, antineoplastic, and antineurodegenerative therapies. A major limitation in studying APT enzymes, however, is the lack of high-throughput assays to measure their activity. We have developed the first fluorescence-based assay, diacetyl benzene (DAB)-APT, for the measurement of APT activity using 1,2-DAB, which forms fluorescent conjugates with putrescine, spermidine, and spermine, with fluorescence intensity increasing with the carbon chain length. The assay has been validated using APT enzymes from Saccharomyces cerevisiae and Plasmodium falciparum, and the data further validated by mass spectrometry and TLC. Using mass spectrometry analysis, the structures of the fluorescent putrescine, spermidine, and spermine 1,2-DAB adducts were determined to be substituted 1,3-dimethyl isoindoles. The DAB-APT assay is optimized for high-throughput screening, facilitating the evaluation of large chemical libraries. Given the critical roles of APTs in infectious diseases, oncology, and neurobiology, the DAB-APT assay offers a powerful tool with broad applicability, poised to drive advancements in research and drug discovery.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jae-Yeon Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Weiwei Wang
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tukiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Philip Lechner
- Department of Chemistry, University of California, Irvine, California, USA
| | - Christopher D Vanderwal
- Department of Chemistry, University of California, Irvine, California, USA; Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Sovitj Pou
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA
| | - Aaron Nilsen
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
6
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
7
|
Singh P, Choi JY, Mamoun CB. DAB-APT: a Fluorescence-Based Assay for Determining Aminopropyl Transferase Activity and Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588734. [PMID: 38645036 PMCID: PMC11030440 DOI: 10.1101/2024.04.09.588734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), promising targets in antimicrobial, antineoplastic and antineurodegenerative therapies. A major limitation, however, is the lack of high-throughput assays to measure their activity. We developed the first fluorescence-based assay, DAB-APT, for measurement of APT activity using 1,2-diacetyl benzene, which forms fluorescent conjugates with putrescine, spermidine and spermine with fluorescence intensity increasing with increasing carbon chain length. The assay has been validated using APT enzymes from S. cerevisiae and P. falciparum and is suitable for high-throughput screening of large chemical libraries. Given the importance of APTs in infectious diseases, cancer and neurobiology, our DAB-APT assay has broad applications, holding promise for advancing research and drug discovery efforts.
Collapse
|
8
|
Brooks WH. Polyamine Dysregulation and Nucleolar Disruption in Alzheimer's Disease. J Alzheimers Dis 2024; 98:837-857. [PMID: 38489184 DOI: 10.3233/jad-231184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.
Collapse
|