1
|
Wang Y, Sun X, Yang Q, Guo C. Cucurbitacin IIb attenuates cancer cachexia induced skeletal muscle atrophy by regulating the IL-6/STAT3/FoxO signaling pathway. Phytother Res 2023; 37:3380-3393. [PMID: 37073890 DOI: 10.1002/ptr.7811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
The main features of cancer cachexia include skeletal muscle atrophy, which can significantly reduce the quality of life of patients. Clinical treatment of cancer cachexia is mainly based on nutritional therapy and physical exercise; medication only improves appetite but does not reverse the symptoms of skeletal muscle wasting. In this work, we systematically studied the underlying molecular mechanisms by which cucurbitacin IIb (CuIIb) ameliorates muscle wasting in cancer cachexia both in vitro and in vivo. CuIIb significantly ameliorated the chief features of cancer cachexia in vivo, alleviating weight loss, food intake, muscle wasting, adipose tissue depletion, and organ weight reductions. In vitro, CuIIb (10 and 20 μM) dose-dependently attenuated conditioned medium (CM)-induced C2C12 myotube atrophy. Collectively, our findings demonstrated that CuIIb prevented the upregulation of the E3 ubiquitin ligase muscle atrophy Fbox protein (MAFbx), myosin heavy chain (MyHC), and myogenin (MyoG) and impacted protein synthesis and degradation. In addition, CuIIb decreased the phosphorylation of Tyr705 in STAT3 by regulating the IL-6/STAT3/FoxO pathway to reduce skeletal muscle atrophy in cancer cachexia.
Collapse
Affiliation(s)
- Yaxian Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang X, Wei Z, Gu M, Zhu L, Hai C, Di A, Wu D, Bai C, Su G, Liu X, Yang L, Li G. Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232415707. [PMID: 36555347 PMCID: PMC9779574 DOI: 10.3390/ijms232415707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (Mstn-/-) mouse has a hypermuscular phenotype. The muscle metabolism of the Mstn-/- mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the Mstn-/- mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the Mstn-/- mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.
Collapse
Affiliation(s)
- Xueqiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| |
Collapse
|
3
|
Pimentel Neto J, Rocha LC, Dos Santos Jacob C, Klein Barbosa G, Ciena AP. Postsynaptic cleft density changes with combined exercise protocols in an experimental model of muscular hypertrophy. Eur J Histochem 2021; 65. [PMID: 34346666 PMCID: PMC8404527 DOI: 10.4081/ejh.2021.3274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The vertical ladder-based protocols contribute to the NMJ junction's adaptations, and when combined with and without load, can be potentiated. The present study aimed to investigate postsynaptic regions of the biceps brachii muscle in adult male Wistar rats submitted to different vertical ladder-based protocols (Sedentary - S; Climbing - C; Climbing with Load - LC and Combined Climbing - CC). The protocols (C, LC, CC) were performed in 24 sessions, 3 x/week, for 8 weeks. The myofibrillar ATPase analysis showed an increase in cross-sectional area (CSA) of the muscle fibers Type I in all trained Groups; Type II in C and LC and reduction in CC; Type IIx higher in all trained Groups. In the postsynaptic cleft, the stained area presents smaller in Groups C, LC, and CC; the total area showed smaller than LC and higher in C and CC. The stained and total perimeter, and dispersion showed a reduction in C, LC, and CC, higher maximum diameter in Groups C and CC, and decreased in LC. Regarding the postsynaptic cleft distribution, the stained area presented a decrease in all trained Groups. The integrated density presented higher principally in CC. The NMJ count showed an increase in all trained Groups. We concluded that the vertical ladder-based protocols combined contributed to the postsynaptic region adaptations.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| |
Collapse
|
4
|
Fenwick AJ, Wood AM, Tanner BCW. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction. Arch Biochem Biophys 2021; 703:108855. [PMID: 33781771 DOI: 10.1016/j.abb.2021.108855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Striated muscle contraction is initiated by Ca2+ binding to, and activating, thin filament regulatory units (RU) within the sarcomere, which then allows myosin cross-bridges from the opposing thick filament to bind actin and generate force. The amount of overlap between the filaments dictates how many potential cross-bridges are capable of binding, and thus how force is generated by the sarcomere. Myopathies and atrophy can impair muscle function by limiting cross-bridge interactions between the filaments, which can occur when the length of the thin filament is reduced or when RU function is disrupted. To investigate how variations in thin filament length and RU density affect ensemble cross-bridge behavior and force production, we simulated muscle contraction using a spatially explicit computational model of the half-sarcomere. Thin filament RUs were disabled either uniformly from the pointed end of the filament (to model shorter thin filament length) or randomly throughout the length of the half-sarcomere. Both uniform and random RU 'knockout' schemes decreased overall force generation during maximal and submaximal activation. The random knockout scheme also led to decreased calcium sensitivity and cooperativity of the force-pCa relationship. We also found that the rate of force development slowed with the random RU knockout, compared to the uniform RU knockout or conditions of normal RU activation. These findings imply that the relationship between RU density and force production within the sarcomere involves more complex coordination than simply the raw number of RUs available for myosin cross-bridge binding, and that the spatial pattern in which activatable RU are distributed throughout the sarcomere influences the dynamics of force production.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Alexander M Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
5
|
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:518-34. [PMID: 27199166 DOI: 10.1002/wdev.230] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jared Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Al-Khayat HA. Three-dimensional structure of the human myosin thick filament: clinical implications. Glob Cardiol Sci Pract 2013; 2013:280-302. [PMID: 24689030 PMCID: PMC3963759 DOI: 10.5339/gcsp.2013.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/11/2013] [Indexed: 11/27/2022] Open
Abstract
High resolution information about the three-dimensional (3D) structure of myosin filaments has always been hard to obtain. Solving the 3D structure of myosin filaments is very important because mutations in human cardiac muscle myosin and its associated proteins (e.g. titin and myosin binding protein C) are known to be associated with a number of familial human cardiomyopathies (e.g. hypertrophic cardiomyopathy and dilated cardiomyopathy). In order to understand how normal heart muscle works and how it fails, as well as the effects of the known mutations on muscle contractility, it is essential to properly understand myosin filament 3D structure and properties in both healthy and diseased hearts. The aim of this review is firstly to provide a general overview of the 3D structure of myosin thick filaments, as studied so far in both vertebrates and invertebrate striated muscles. Knowledge of this 3D structure is the starting point from which myosin filaments isolated from human cardiomyopathic samples, with known mutations in either myosin or its associated proteins (titin or C-protein), can be studied in detail. This should, in turn, enable us to relate the structure of myosin thick filament to its function and to understanding the disease process. A long term objective of this research would be to assist the design of possible therapeutic solutions to genetic myosin-related human cardiomyopathies.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Qatar Cardiovascular Research Centre, Qatar Foundation, PO Box 5825, Doha, Qatar
| |
Collapse
|
7
|
Lin YC, Chiu KH, Shiea J, Huang HW, Mok HK. Seasonal changes in atrophy-associated proteins of the sonic muscle in the big-snout croaker, Johnius macrorhynus (Pisces, Sciaenidae), identified by using a proteomic approach. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:977-991. [PMID: 21553060 DOI: 10.1007/s10695-011-9502-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
In most sciaenids, males possess sonic muscles and produce sound through the contraction of these muscles and amplification of the swim bladder. The sonic muscles in some fishes exhibit seasonal changes in size. For example, they are hypertrophic in the spawning season, and atrophic in the non-spawning months. The protein profiles of the sonic muscle, red muscle, and white muscle in the Johnius macrorhynus were shown by two-dimensional electrophoresis (2-DE) and were compared to reveal differential protein expressions. About 80 up-regulated protein spots in the sonic muscle, and 30 spots related to six contractile proteins (fast muscle myosin heavy chain, skeletal alpha actin, alpha actin cardiac, tropomyosin, myosin light chain 2, and myosin light chain 3), four energy metabolic enzymes (enolase, acyl-CoA synthetase, creatine kinase, and cytochrome P450 monooxygenase), and two miscellaneous proteins (DEAD box protein and cyclin H) were identified. Seasonal hypertrophy and atrophy of the sonic muscles related to the reproductive cycle were verified in male big-snout croaker. The contents of some proteins were significantly different in the muscles under these conditions. The levels of cytochrome P450 monooxygenase, fast muscle myosin heavy chain, DEAD box proteins, isocitrate dehydrogenase, and creatine kinase were up-regulated in the hypertrophic muscle, but the levels of alpha actin cardiac, myosin light 2, and myosin light 3 were lower than in the atrophic muscle. Potential reasons for these differences in protein expression related to physiological adaptation are discussed.
Collapse
Affiliation(s)
- Yuan-Chih Lin
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Ciena AP, de Almeida SRY, Alves PHDM, Bolina-Matos RDS, Dias FJ, Issa JPM, Iyomasa MM, Watanabe IS. Histochemical and ultrastructural changes of sternomastoid muscle in aged Wistar rats. Micron 2011; 42:871-6. [PMID: 21767955 DOI: 10.1016/j.micron.2011.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 12/25/2022]
Abstract
The aim of this study was to evaluate histochemically and ultrastructurally the sternomastoid muscle (SM) of adults and aged rats, employing histochemic (NADH-TR reaction) and transmission electron microscopic methods. It was used 20 rats, divided into two groups: adults (n=10), animals with 4 months of age, and aged group (n=10), animals with 24 months of age. Five animals from each group were anesthetized with an overdose of urethane (3g/kg i.p.), and the muscles dissected after the samples processing for histochemical reaction (NADH-TR). Three types of fibers were identified by their metabolic characteristics: fibers with high oxidative capacity (O), intermediate oxidative capacity (OG) and low oxidative capacity (G). For transmission electron microscopic method, the animals were anesthetized and perfused by modified Karnovsky solution and the tissues were postfixed in 1% osmium tetroxide solution, dehydrated and embedded in Spurr resin. It was performed ultra-thin sections for transmission electron microscopic analysis. The SM showed heterogeneity in their composition according to the fiber types, with significant difference (p<0.05) when comparing the fibers types between the superficial and deep regions and between the adult and aged groups. It was observe a decrease between the comparison of the total fibers density and GO fiber, and an increase of the O fiber in aged group. Ultrastructural characteristics of muscle cells in aged group showed typical morphological changes, characterizing muscular atrophy. We conclude based on physiological ageing process, changes in muscle fibers classification, and ultrastructuraly, morphological alterations on muscle cells, characterizing a muscular atrophy.
Collapse
Affiliation(s)
- Adriano Polican Ciena
- Department of Anatomy, Institute of Biomedical Sciences-ICB, University of São Paulo, Av. Prof. Lineu Prestes, 2415 Butantã, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|