1
|
Niemand Wolhuter N, Ngakane L, de Wet TJ, Warren RM, Williams MJ. The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis. Microorganisms 2023; 11:1573. [PMID: 37375075 DOI: 10.3390/microorganisms11061573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth.
Collapse
Affiliation(s)
- Nandi Niemand Wolhuter
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Lerato Ngakane
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Robin M Warren
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Monique J Williams
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Liu F, Su Z, Chen P, Tian X, Wu L, Tang DJ, Li P, Deng H, Ding P, Fu Q, Tang JL, Ming Z. Structural basis for zinc-induced activation of a zinc uptake transcriptional regulator. Nucleic Acids Res 2021; 49:6511-6528. [PMID: 34048589 PMCID: PMC8216289 DOI: 10.1093/nar/gkab432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
The zinc uptake regulator (Zur) is a member of the Fur (ferric uptake regulator) family transcriptional regulators that plays important roles in zinc homeostasis and virulence of bacteria. Upon zinc perception, Zur binds to the promoters of zinc responsive genes and controls their transcription. However, the mechanism underlying zinc-mediated Zur activation remains unclear. Here we report a 2.2-Å crystal structure of apo Zur from the phytopathogen Xanthomonas campestris pv. campestris (XcZur), which reveals the molecular mechanism that XcZur exists in a closed inactive state before regulatory zinc binding. Subsequently, we present a 1.9-Å crystal structure of holo XcZur, which, by contrast, adopts an open state that has enough capacity to bind DNA. Structural comparison and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses uncover that binding of a zinc atom in the regulatory site, formed by the hinge region, the dimerization domain and the DNA binding domain, drives a closed-to-open conformational change that is essential for XcZur activation. Moreover, key residues responsible for DNA recognition are identified by site-directed mutagenesis. This work provides important insights into zinc-induced XcZur activation and valuable discussions on the mechanism of DNA recognition.
Collapse
Affiliation(s)
- Fenmei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zihui Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Peng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Xiaolin Tian
- Protein Chemistry and Proteomics Facility, Protein Research Technology Center, Tsinghua University, Beijing 100084, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Dong-Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Peifang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Haiteng Deng
- Protein Chemistry and Proteomics Facility, Protein Research Technology Center, Tsinghua University, Beijing 100084, China
| | - Pengfei Ding
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Liu J, Tian Y, Zhao Y, Zeng R, Chen B, Hu B, Walcott RR. Ferric Uptake Regulator (FurA) is Required for Acidovorax citrulli Virulence on Watermelon. PHYTOPATHOLOGY 2019; 109:1997-2008. [PMID: 31454303 DOI: 10.1094/phyto-05-19-0172-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch, a serious threat to commercial watermelon and melon crop production worldwide. Ferric uptake regulator (Fur) is a global transcription factor that affects a number of virulence-related functions in phytopathogenic bacteria; however, the role of furA has not been determined for A. citrulli. Hence, we constructed an furA deletion mutant and a corresponding complement in the background of A. citrulli strain xlj12 to investigate the role of the gene in siderophore production, concentration of intracellular Fe2+, bacterial sensitivity to hydrogen peroxide, biofilm formation, swimming motility, hypersensitive response induction, and virulence on melon seedlings. The A. citrulli furA deletion mutant displayed increased siderophore production, intracellular Fe2+ concentration, and increased sensitivity to hydrogen peroxide. In contrast, biofilm formation, swimming motility, and virulence on melon seedlings were significantly reduced in the furA mutant. As expected, complementation of the furA deletion mutant restored all phenotypes to wild-type levels. In accordance with the phenotypic results, the expression levels of bfrA and bfrB that encode bacterioferritin, sodB that encodes iron/manganese superoxide dismutase, fliS that encodes a flagellar protein, hrcN that encodes the type III secretion system (T3SS) ATPase, and hrcC that encodes the T3SS outer membrane ring protein were significantly downregulated in the A. citrulli furA deletion mutant. In addition, the expression of feo-related genes and feoA and feoB was significantly upregulated in the furA mutant. Overall, these results indicated that, in A. citrulli, FurA contributes to the regulation of the iron balance system, and affects a variety of virulence-related traits.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Rong Zeng
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ron R Walcott
- Department of Plant Pathology, 4315 Miller Plant Sciences, the University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
5
|
Gao CH, Wei WP, Tao HL, Cai LK, Jia WZ, Hu L, Yang M. Cross-talk between the three furA orthologs in Mycobacterium smegmatis and the contribution to isoniazid resistance. J Biochem 2019; 166:237-243. [PMID: 30993320 DOI: 10.1093/jb/mvz030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023] Open
Abstract
The ferric uptake regulator A (FurA) plays an essential role in responding to oxidative stress in mycobacteria. The genome of Mycobacterium smegmatis harbours three FurA orthologs; however, the potential cross-talk and contribution to drug resistance of different furA operon remain underdetermined. In this study, we characterized the cross-regulation and effect in drug resistance of these orthologs from M. smegmatis. Cross-binding of FurA protein to furA promoter was observed. The binding of FurA1 to furA3p and FurA2 to furA1p or furA3p is even more pronounced than their self-binding. The three FurA proteins are all functional at repressing the expression of the peroxidase enzyme katG1/katG2 in vivo. When overexpressing any of the furA orthologs in M. smegmatis, the bacteria become more resistant to isoniazid (INH). This pattern is consistent with that in Mycobacterium bovis. However, the knockdown of furA does not affect the INH sensitivity. This is the first report of cross-talk and contribution to drug resistance of all three furA orthologs in M. smegmatis.
Collapse
Affiliation(s)
- Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Wen-Ping Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Hui-Ling Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Li-Kai Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Wan-Zhong Jia
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, No. 1, Xujiaping, Chengguan District, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lihua Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Min Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| |
Collapse
|
6
|
Bacterial zinc uptake regulator proteins and their regulons. Biochem Soc Trans 2018; 46:983-1001. [PMID: 30065104 PMCID: PMC6103462 DOI: 10.1042/bst20170228] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
All organisms must regulate the cellular uptake, efflux, and intracellular trafficking of essential elements, including d-block metal ions. In bacteria, such regulation is achieved by the action of metal-responsive transcriptional regulators. Among several families of zinc-responsive transcription factors, the ‘zinc uptake regulator’ Zur is the most widespread. Zur normally represses transcription in its zinc-bound form, in which DNA-binding affinity is enhanced allosterically. Experimental and bioinformatic searches for Zur-regulated genes have revealed that in many cases, Zur proteins govern zinc homeostasis in a much more profound way than merely through the expression of uptake systems. Zur regulons also comprise biosynthetic clusters for metallophore synthesis, ribosomal proteins, enzymes, and virulence factors. In recognition of the importance of zinc homeostasis at the host–pathogen interface, studying Zur regulons of pathogenic bacteria is a particularly active current research area.
Collapse
|
7
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
8
|
Patel SJ, Lewis BE, Long JE, Nambi S, Sassetti CM, Stemmler TL, Argüello JM. Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases. J Biol Chem 2016; 291:11529-39. [PMID: 27022029 DOI: 10.1074/jbc.m116.718239] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
Little is known about iron efflux transporters within bacterial systems. Recently, the participation of Bacillus subtilis PfeT, a P1B4-ATPase, in cytoplasmic Fe(2+) efflux has been proposed. We report here the distinct roles of mycobacterial P1B4-ATPases in the homeostasis of Co(2+) and Fe(2+) Mutation of Mycobacterium smegmatis ctpJ affects the homeostasis of both ions. Alternatively, an M. tuberculosis ctpJ mutant is more sensitive to Co(2+) than Fe(2+), whereas mutation of the homologous M. tuberculosis ctpD leads to Fe(2+) sensitivity but no alterations in Co(2+) homeostasis. In vitro, the three enzymes are activated by both Fe(2+) and Co(2+) and bind 1 eq of either ion at their transport site. However, equilibrium binding affinities and activity kinetics show that M. tuberculosis CtpD has higher affinity for Fe(2+) and twice the Fe(2+)-stimulated activity than the CtpJs. These parameters are paralleled by a lower activation and affinity for Co(2+) Analysis of Fe(2+) and Co(2+) binding to CtpD by x-ray absorption spectroscopy shows that both ions are five- to six-coordinate, constrained within oxygen/nitrogen environments with similar geometries. Mutagenesis studies suggest the involvement of invariant Ser, His, and Glu residues in metal coordination. Interestingly, replacement of the conserved Cys at the metal binding pocket leads to a large reduction in Fe(2+) but not Co(2+) binding affinity. We propose that CtpJ ATPases participate in the control of steady state Fe(2+) levels. CtpD, required for M. tuberculosis virulence, is a high affinity Fe(2+) transporter involved in the rapid response to iron dyshomeostasis generated upon redox stress.
Collapse
Affiliation(s)
- Sarju J Patel
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Brianne E Lewis
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - José M Argüello
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609,
| |
Collapse
|
9
|
Iron Acquisition in Mycobacterium avium subsp. paratuberculosis. J Bacteriol 2015; 198:857-66. [PMID: 26712939 PMCID: PMC4810606 DOI: 10.1128/jb.00922-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/18/2015] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is a host-adapted pathogen that evolved from the environmental bacterium M. avium subsp. hominissuis through gene loss and gene acquisition. Growth of M. avium subsp. paratuberculosis in the laboratory is enhanced by supplementation of the media with the iron-binding siderophore mycobactin J. Here we examined the production of mycobactins by related organisms and searched for an alternative iron uptake system in M. avium subsp. paratuberculosis. Through thin-layer chromatography and radiolabeled iron-uptake studies, we showed that M. avium subsp. paratuberculosis is impaired for both mycobactin synthesis and iron acquisition. Consistent with these observations, we identified several mutations, including deletions, in M. avium subsp. paratuberculosis genes coding for mycobactin synthesis. Using a transposon-mediated mutagenesis screen conditional on growth without myobactin, we identified a potential mycobactin-independent iron uptake system on a M. avium subsp. paratuberculosis-specific genomic island, LSPP15. We obtained a transposon (Tn) mutant with a disruption in the LSPP15 gene MAP3776c for targeted study. The mutant manifests increased iron uptake as well as intracellular iron content, with genes downstream of the transposon insertion (MAP3775c to MAP3772c [MAP3775-2c]) upregulated as the result of a polar effect. As an independent confirmation, we observed the same iron uptake phenotypes by overexpressing MAP3775-2c in wild-type M. avium subsp. paratuberculosis. These data indicate that the horizontally acquired LSPP15 genes contribute to iron acquisition by M. avium subsp. paratuberculosis, potentially allowing the subsequent loss of siderophore production by this pathogen. IMPORTANCE Many microbes are able to scavenge iron from their surroundings by producing iron-chelating siderophores. One exception is Mycobacterium avium subsp. paratuberculosis, a fastidious, slow-growing animal pathogen whose growth needs to be supported by exogenous mycobacterial siderophore (mycobactin) in the laboratory. Data presented here demonstrate that, compared to other closely related M. avium subspecies, mycobactin production and iron uptake are different in M. avium subsp. paratuberculosis, and these phenotypes may be caused by numerous deletions in its mycobactin biosynthesis pathway. Using a genomic approach, supplemented by targeted genetic and biochemical studies, we identified that LSPP15, a horizontally acquired genomic island, may encode an alternative iron uptake system. These findings shed light on the potential physiological consequence of horizontal gene transfer in M. avium subsp. paratuberculosis evolution.
Collapse
|
10
|
Eckelt E, Meißner T, Meens J, Laarmann K, Nerlich A, Jarek M, Weiss S, Gerlach GF, Goethe R. FurA contributes to the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis. Front Microbiol 2015; 6:16. [PMID: 25705205 PMCID: PMC4319475 DOI: 10.3389/fmicb.2015.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator.
Collapse
Affiliation(s)
- Elke Eckelt
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Thorsten Meißner
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Gerald-F Gerlach
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Hannover, Germany
| |
Collapse
|
11
|
Fang Z, Sampson SL, Warren RM, Gey van Pittius NC, Newton-Foot M. Iron acquisition strategies in mycobacteria. Tuberculosis (Edinb) 2015; 95:123-30. [PMID: 25636179 DOI: 10.1016/j.tube.2015.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/01/2015] [Accepted: 01/07/2015] [Indexed: 02/04/2023]
Abstract
Iron is an essential element to most life forms including mycobacterial species. However, in the oxidative atmosphere iron exists as insoluble salts. Free and soluble iron ions are scarce in both the extracellular and intracellular environment which makes iron assimilation very challenging to mycobacteria. Tuberculosis, caused by the pathogen, Mycobacterium tuberculosis, is one of the most infectious and deadly diseases in the world. Extensive studies regarding iron acquisition strategies have been documented in mycobacteria, including work on the mycobacterial iron chelators (siderophores), the iron-responsive regulon, and iron transport and utilization pathways. Under low iron conditions, expression of the genes encoding iron importers, exporters and siderophore biosynthetic enzymes is up-regulated significantly increasing the ability of the bacteria to acquire limited host iron. Disabling these proteins impairs the growth of mycobacteria under low iron conditions both in vitro and in vivo, and that of pathogenic mycobacteria in animal models. Drugs targeting siderophore-mediated iron transport could offer promising therapeutic options. However, the discovery and characterization of an alternative iron acquisition mechanism, the heme transport and utilization pathway, questions the effectiveness of the siderophore-centered therapeutic strategy. Links have been found between these two distinct iron acquisition mechanisms, thus, targeting a few candidate proteins or mechanisms may influence both pathways, leading to effective elimination of the bacteria in the host.
Collapse
Affiliation(s)
- Zhuo Fang
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Samantha Leigh Sampson
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Robin Mark Warren
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Nicolaas Claudius Gey van Pittius
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| | - Mae Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| |
Collapse
|
12
|
Rapid in vivo detection of isoniazid-sensitive Mycobacterium tuberculosis by breath test. Nat Commun 2014; 5:4989. [PMID: 25247851 PMCID: PMC4182730 DOI: 10.1038/ncomms5989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022] Open
Abstract
There is urgent need for rapid, point of care diagnostic tools for tuberculosis (TB) and drug sensitivity. Current methods based on in vitro growth take weeks, while DNA amplification can neither differentiate live from dead organisms nor determine phenotypic drug resistance. Here we show the development and evaluation of a rapid breath test for isoniazid (INH)-sensitive TB based on detection of labeled N2 gas formed specifically from labeled INH by mycobacterial KatG enzyme. In vitro data shows the assay is specific, dependent on mycobacterial abundance, and discriminates between INH-sensitive and resistant (S315T mutant KatG) TB. In vivo, the assay is rapid with maximal detection of 15N2 in exhaled breath of infected rabbits within five to ten minutes. No increase in 15N2 is detected in un-infected animals, and the increases in 15N2 are dependent on infection dose. This test may allow rapid detection of INH-sensitive TB.
Collapse
|
13
|
Identification of opsA, a gene involved in solute stress mitigation and survival in soil, in the polycyclic aromatic hydrocarbon-degrading bacterium Novosphingobium sp. strain LH128. Appl Environ Microbiol 2014; 80:3350-61. [PMID: 24657861 DOI: 10.1128/aem.00306-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify genes involved in solute and matric stress mitigation in the polycyclic aromatic hydrocarbon (PAH)-degrading Novosphingobium sp. strain LH128. The genes were identified using plasposon mutagenesis and by selection of mutants that showed impaired growth in a medium containing 450 mM NaCl as a solute stress or 10% (wt/vol) polyethylene glycol (PEG) 6000 as a matric stress. Eleven and 14 mutants showed growth impairment when exposed to solute and matric stresses, respectively. The disrupted sequences were mapped on a draft genome sequence of strain LH128, and the corresponding gene functions were predicted. None of them were shared between solute and matric stress-impacted mutants. One NaCl-affected mutant (i.e., NA7E1) with a disruption in a gene encoding a putative outer membrane protein (OpsA) was susceptible to lower NaCl concentrations than the other mutants. The growth of NA7E1 was impacted by other ions and nonionic solutes and by sodium dodecyl sulfate (SDS), suggesting that opsA is involved in osmotic stress mitigation and/or outer membrane stability in strain LH128. NA7E1 was also the only mutant that showed reduced growth and less-efficient phenanthrene degradation in soil compared to the wild type. Moreover, the survival of NA7E1 in soil decreased significantly when the moisture content was decreased but was unaffected when soluble solutes from sandy soil were removed by washing. opsA appears to be important for the survival of strain LH128 in soil, especially in the case of reduced moisture content, probably by mitigating the effects of solute stress and retaining membrane stability.
Collapse
|
14
|
Gao X, Wang LM, Bai YL, Jiang H, Li Y, Shi CH, Zhang H, Xue Y. Expression of Mycobacterium tuberculosis ferric uptake regulator A gene in Escherichia coli and generation of monoclonal antibodies to FurA. Hybridoma (Larchmt) 2011; 30:331-9. [PMID: 21851232 DOI: 10.1089/hyb.2011.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ferric uptake regulator A of Mycobacterium tuberculosis (MTB), which belongs to the Fur superfamily, is situated immediately upstream of katG encoding catalase-peroxidase, a major virulence factor that also activates the pro-drug isoniazid. The feature and role of FurA in oxidative stress contribute to research on the pathogenesis of mycobacteria. In this study, four novel mouse monoclonal antibodies were generated using the prokaryotically expressed FurA protein as immunogen. The furA gene of M. tuberculosis H37Rv was inserted into a bacterial expression vector of pRSET-A and effectively expressed in Escherichia coli BL21(DE3). The expressed fusion protein existed as soluble form in cell lysates and was purified via Ni-NTA purification system. Using the fusion protein to immunize BALB/c mice, four monoclonal antibodies (H9H6, H9E12, H10H6, and H10H8) were produced. As shown by Western blot analysis and cell fluorescence microscopy assay, the four antibodies could recognize the FurA protein, respectively. Then we assessed the effect of iron on the expression of FurA in MTB H37Rv and we concluded that iron does not affect FurA expression. These results suggest that the antibodies against FurA may provide a powerful tool for elucidating FurA biofunctions and regulation mechanism in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Xue Gao
- Department of Otorhinolaryngology, General Hospital of Second Artillery, Beijing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Reyes-Caballero H, Campanello GC, Giedroc DP. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 2011; 156:103-14. [PMID: 21511390 DOI: 10.1016/j.bpc.2011.03.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023]
Abstract
Prokaryotic organisms have evolved the capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins controls the expression of genes encoding membrane transporters and metal trafficking proteins that collectively manage metal homeostasis and resistance. These "metal sensors" are specialized allosteric proteins, in which the direct binding of a specific or small number of "cognate" metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding.
Collapse
|
16
|
Banerjee S, Farhana A, Ehtesham NZ, Hasnain SE. Iron acquisition, assimilation and regulation in mycobacteria. INFECTION GENETICS AND EVOLUTION 2011; 11:825-38. [PMID: 21414421 DOI: 10.1016/j.meegid.2011.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/28/2022]
Abstract
Iron is as crucial to the pathogen as it is to the host. The tuberculosis causing bacillus, Mycobacterium tuberculosis (M.tb), is an exceptionally efficient pathogen that has evolved proficient mechanisms to sequester iron from the host despite its thick mycolate-rich outer covering and a highly impermeable membrane of phagolysosome within which it persists inside an infected host macrophage. Further, both overindulgence and moderation of iron inside a host are a threat to mycobacterial persistence. While for removing iron from the host reservoirs, mycobacteria synthesize molecules that have several times higher affinity for iron than their host counterparts, they also synthesize molecules for efficient storage of excess iron. This is supported by tightly regulated iron dependent global gene expressions. In this review we discuss the various molecules and pathways evolved by mycobacteria for an efficient iron metabolism. We also discuss the less investigated players, like iron responsive proteins and iron responsive elements in mycobacteria, and highlight the lacunae in our current understanding of iron acquisition and utilization in mycobacteria with an ultimate aim to make iron metabolism as a possible anti-mycobacterial target.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
17
|
Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus. J Bacteriol 2011; 193:1734-44. [PMID: 21257767 DOI: 10.1128/jb.01339-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5' untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.
Collapse
|
18
|
Hayashi D, Takii T, Mukai T, Makino M, Yasuda E, Horita Y, Yamamoto R, Fujiwara A, Kanai K, Kondo M, Kawarazaki A, Yano I, Yamamoto S, Onozaki K. Biochemical characteristics amongMycobacterium bovisBCG substrains. FEMS Microbiol Lett 2010; 306:103-9. [DOI: 10.1111/j.1574-6968.2010.01947.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Jang HJ, Nde C, Toghrol F, Bentley WE. Microarray analysis of Mycobacterium bovis BCG revealed induction of iron acquisition related genes in response to hydrogen peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:9465-9472. [PMID: 19924887 DOI: 10.1021/es902255q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mycobacterium bovis BCG strain Pasteur 1173P2 responds with adaptive and protective strategies against oxidative stress. Despite advances in our understanding of the responses to oxidative stress in many specific cases, the connectivity between targeted protective genes and the rest of cell metabolism remains obscure. This study was therefore carried out to investigate the genome-wide response of M. bovis BCG to hydrogen peroxide after 10 and 60 min of treatment. ATP measurements were carried out in order to monitor the changes in M. bovis BCG growth over a 1 h period. The furA gene in Mycobacterium bovis, a pleiotropic regulator that couples iron metabolism to the oxidative stress response was involved in the response to hydrogen peroxide stress. There were also increased levels of catalase/ peroxidase (KatG) and the biosynthesis operon of mycobactin. This study revealed significant upregulation of the oxidative response group of M. bovis, amino acid transport and metabolism, defense mechanisms, DNA replication, recombination and repair, and downregulation of cell cycle control, mitosis, and meiosis, lipid transport and metabolism, and cell wall/membrane biogenesis. This study shows that the treatment of M. bovis BCG with hydrogen peroxide induces iron acquisition related genes and oxidative stress response genes within one hour of treatment.
Collapse
Affiliation(s)
- Hyeung-Jin Jang
- Department of Biochemistry, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Expression of BfrH, a putative siderophore receptor of Bordetella bronchiseptica, is regulated by iron, Fur1, and the extracellular function sigma factor EcfI. Infect Immun 2009; 78:1147-62. [PMID: 20008538 DOI: 10.1128/iai.00961-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron (Fe) in soluble elemental form is found in the tissues and fluids of animals at concentrations insufficient for sustaining growth of bacteria. Consequently, to promote colonization and persistence, pathogenic bacteria evolved a myriad of scavenging mechanisms to acquire Fe from the host. Bordetella bronchiseptica, the etiologic agent of upper respiratory infections in a wide range of mammalian hosts, expresses a number of proteins for acquisition of Fe. Using proteomic and genomic approaches, three Fe-regulated genes were identified in the bordetellae: bfrH, a gene encoding a putative siderophore receptor; ecfI, a gene encoding a putative extracellular function (ECF) sigma factor; and ecfR, a gene encoding a putative EcfI modulator. All three genes are highly conserved in B. pertussis, B. parapertussis, and B. avium. Genetic analysis revealed that transcription of bfrH was coregulated by ecfI, ecfR, and fur1, one of two fur homologues carried by B. bronchiseptica. Overexpression of ecfI decoupled bfrH from Fe-dependent regulation. In contrast, expression of bfrH was significantly reduced in an ecfI deletion mutant. Deletion of ecfR, however, was correlated with a significant increase in expression of bfrH, due in part to a cis-acting nucleotide sequence within ecfR which likely reduces the frequency of readthrough transcription of bfrH from the Fe-dependent ecfIR promoter. Using a murine competition infection model, bfrH was shown to be required for optimal virulence of B. bronchiseptica. These experiments revealed ecfIR-bfrH as a locus encoding a new member of the growing family of Fe and ECF sigma factor-modulated regulons in the bordetellae.
Collapse
|
21
|
Saha B, Mukherjee S, Dutta D, Das AK. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the transcriptional repressor SirR from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:154-8. [PMID: 19194009 PMCID: PMC2635875 DOI: 10.1107/s1744309108043534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/22/2008] [Indexed: 11/10/2022]
Abstract
SirR, a metal-dependent transcriptional repressor from Mycobacterium tuberculosis (Rv2788), was cloned in pQE30 expression vector with an N-terminal His(6) tag for heterologous overexpression in Escherichia coli M15 (pREP4) cells and purified to homogeneity using chromatographic procedures. The purified protein was crystallized using the sitting-drop vapour-diffusion technique. The crystals belonged to the tetragonal space group P4(1)2(1)2/P4(3)2(1)2, with unit-cell parameters a = 105.21, b = 105.21, c = 144.85 A. The X-ray diffraction data were processed to a maximum resolution of 2.5 A. The Matthews coefficient suggests the presence of two (V(M) = 4.01 A(3) Da(-1)) to four (V(M) = 2.0 A(3) Da(-1)) molecules in the asymmetric unit. Calculation of the self-rotation function shows a crystallographic fourfold symmetry axis along the z axis (chi = 90 degrees) and also a twofold symmetry axis around the z axis (chi = 180 degrees).
Collapse
Affiliation(s)
- Baisakhee Saha
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| |
Collapse
|