1
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
2
|
Choi WJ, Kim SH, Lee SR, Oh SH, Kim SW, Shin HY, Park HJ. Global carrier frequency and predicted genetic prevalence of patients with pathogenic sequence variants in autosomal recessive genetic neuromuscular diseases. Sci Rep 2024; 14:3806. [PMID: 38361118 PMCID: PMC10869705 DOI: 10.1038/s41598-024-54413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Genetic neuromuscular diseases are clinically and genetically heterogeneous genetic disorders that primarily affect the peripheral nerves, muscles, and neuromuscular junctions. This study aimed to identify pathogenic variants, calculate carrier frequency, and predict the genetic prevalence of autosomal recessive neuromuscular diseases (AR-NMDs). We selected 268 AR-NMD genes and analyzed their genetic variants sourced from the gnomAD database. After identifying the pathogenic variants using an algorithm, we calculated the carrier frequency and predicted the genetic prevalence of AR-NMDs. In total, 10,887 pathogenic variants were identified, including 3848 literature verified and 7039 manually verified variants. In the global population, the carrier frequency of AR-NMDs is 32.9%, with variations across subpopulations ranging from 22.4% in the Finnish population to 36.2% in the non-Finnish European population. The predicted genetic prevalence of AR-NMDs was estimated to be 24.3 cases per 100,000 individuals worldwide, with variations across subpopulations ranging from 26.5 to 41.4 cases per 100,000 individuals in the Latino/Admixed American and the Ashkenazi Jewish populations, respectively. The AR-NMD gene with the highest carrier frequency was GAA (1.3%) and the variant with the highest allele frequency was c.-32-13 T>G in GAA with 0.0033 in the global population. Our study revealed a higher-than-expected frequency of AR-NMD carriers, constituting approximately one-third of the global population, highlighting ethnic heterogeneity in genetic susceptibility.
Collapse
Affiliation(s)
- Won-Jun Choi
- CHA University School of Medicine, Seongnam, Republic of Korea
| | - Soo-Hyun Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Sung Rok Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea.
- Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Mackels L, Servais L. The Importance of Early Treatment of Inherited Neuromuscular Conditions. J Neuromuscul Dis 2024; 11:253-274. [PMID: 38306060 DOI: 10.3233/jnd-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
There has been tremendous progress in treatment of neuromuscular diseases over the last 20 years, which has transformed the natural history of these severely debilitating conditions. Although the factors that determine the response to therapy are many and in some instance remain to be fully elucidated, early treatment clearly has a major impact on patient outcomes across a number of inherited neuromuscular conditions. To improve patient care and outcomes, clinicians should be aware of neuromuscular conditions that require prompt treatment initiation. This review describes data that underscore the importance of early treatment of children with inherited neuromuscular conditions with an emphasis on data resulting from newborn screening efforts.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Adult Neurology Department, Citadelle Hospital, Liège, Belgium
| | - Laurent Servais
- Neuromuscular Centre, Division of Paediatrics, University and University Hospital of Liège, Liège, Belgium
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
4
|
Pillai NR, Fabie NAV, Kaye TV, Rosendahl SD, Ahmed A, Hietala AD, Jorgenson AB, Lanpher BC, Whitley CB. Disparities in late and lost: Pediatricians' role in following Pompe disease identified by newborn screening. Mol Genet Metab 2023; 140:107633. [PMID: 37414610 DOI: 10.1016/j.ymgme.2023.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Pompe disease (PD) results from a deficiency of lysosomal acid α-glucosidase that leads to glycogen accumulation in lysosomes in multiple tissues. There are two phenotypes: infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD). The objective was to evaluate the diagnostic and follow-up outcomes of children identified with PD through newborn screening (NBS) in the state of Minnesota over a 4-year period. METHODS This study is a retrospective analysis of infants born in Minnesota between August 1, 2017, and July 31, 2021, by the Minnesota Department of Health NBS Program for Pompe disease. Newborn screening and clinical diagnostic data are summarized for all newborns with positive newborn screens for Pompe disease. RESULTS Children with IOPD had abnormal biomarkers necessitating immediate initiation of treatment. Children with LOPD are asymptomatic to date (1.25-4.58 years) with normal biomarkers including creatine kinase, urine glucotetrasaccharides, liver function tests, and echocardiogram. The estimated birth prevalence of PD is 1:15,160. The positive predictive value for PD was 81% with a false positive rate of 1.9 per 10 positive screens. 32% of the children with LOPD were lost to follow up among which 66% were from minority ethnic groups. CONCLUSION This emphasizes the disparity in access to health care among specific demographics, as well as the importance of a primary care provider's early involvement in educating these families. To accomplish this, and ensure equality in follow-up care, the Minnesota Pompe Disease Consortium has been formed.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, MN, USA.
| | | | - Tory V Kaye
- Minnesota Department of Health (MDH), Public Health Laboratory, Newborn Screening, MN, USA
| | - Sondra D Rosendahl
- Minnesota Department of Health (MDH), Public Health Laboratory, Newborn Screening, MN, USA
| | - Alia Ahmed
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, MN, USA
| | - Amy D Hietala
- Minnesota Department of Health (MDH), Public Health Laboratory, Newborn Screening, MN, USA
| | | | | | - Chester B Whitley
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, MN, USA
| |
Collapse
|
5
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
6
|
Liquid Chromatography-Tandem Mass Spectrometry in Newborn Screening Laboratories. Int J Neonatal Screen 2022; 8:ijns8040062. [PMID: 36547379 PMCID: PMC9781967 DOI: 10.3390/ijns8040062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Tandem mass spectrometry (MS/MS) is the most universal platform currently available for the analysis of enzymatic activities and biomarkers in dried blood spots (DBS) for applications in newborn screening (NBS). Among the MS/MS applications in NBS, the most common is flow-injection analysis (FIA-) MS/MS, where the sample is introduced as a bolus injection into the mass spectrometer without the prior fractionation of analytes. Liquid chromatography combined with MS/MS (LC-MS/MS) has been employed for second-tier tests to reduce the false-positive rate associated with several nonspecific screening markers, beginning two decades ago. More recently, LC-MS/MS has been applied to primary screening for new conditions for which FIA-MS/MS or other methods, including genomic screening, are not yet adequate. In addition to providing a list of the currently used LC-MS/MS-based assays for NBS, the authors share their experience regarding the maintenance requirements of LC-MS/MS vs. FIA-MS/MS systems. The consensus is that the maintenance of LC-MS/MS and FIA-MS/MS instrumentation is similar, and LC-MS/MS has the advantage of allowing for a larger number of diseases to be screened for in a multiplex, cost-effective fashion with a high throughput and an adequate turnaround time.
Collapse
|
7
|
Al-Hassnan Z, Hashmi NA, Makhseed N, Omran TB, Al Jasmi F, Teneiji AA. Expert Group Consensus on early diagnosis and management of infantile-onset pompe disease in the Gulf Region. Orphanet J Rare Dis 2022; 17:388. [PMID: 36303251 PMCID: PMC9615381 DOI: 10.1186/s13023-022-02545-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Infantile-onset Pompe disease (IOPD) is a rare and devastating, autosomal recessive lysosomal storage disorder that manifests immediately after birth. In severe IOPD cases, complete/almost-complete acid alpha-glucosidase enzyme deficiency is observed. Considering the rapid progression of the disease, timely diagnosis and treatment are important; even slight delays can remarkably alter the course of the disease. Enzyme replacement therapy (ERT) with recombinant human acid alpha-glucosidase is safe and beneficial for IOPD patients. However, there is heterogeneity in the patient response to ERT. The factors influencing treatment effectiveness include the patient's age at the time of treatment initiation, pre-existing muscle damage, and cross-reactive immunologic material (CRIM) status at baseline. Immunomodulation along with ERT is the recently developed therapeutic approach that has been included in the therapeutic armamentarium of IOPD for optimizing clinical benefits, particularly in CRIM-negative IOPD patients. However, there is a dearth of published data on the early diagnosis and clinical position of the immunomodulation protocol along with ERT in the treatment of IOPD in the Gulf region. METHODS AND RESULTS Expert panel meetings, involving six experts from the Kingdom of Saudi Arabia, Kuwait, Oman, Qatar, and the United Arab Emirates, were convened to develop consensus-based recommendations addressing current diagnostic and management challenges for patients with IOPD in the Gulf region. Furthermore, this consensus guideline may be implemented in clinical practice for the timely diagnosis and management of patients with IOPD. CONCLUSION The expert consensus will help clinicians to make appropriate and timely decisions regarding immunomodulation initiation and ERT treatment in IOPD patients in the Gulf region.
Collapse
Affiliation(s)
- Zuhair Al-Hassnan
- Department of Medical Genetics, MBC-75 King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.
| | - Nadia Al Hashmi
- Department of Child Health, National Genetic Center, Royal Hospital, Muscat, Sultanate of Oman
| | - Nawal Makhseed
- Pediatric Department, Al-Farwaniya Hospital, and Maternity Hospital, Al-Jahra Hospital, Kuwait, Kuwait
| | - Tawfeg Ben Omran
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Fatma Al Jasmi
- Department of Genetics and Genomic Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Division of Metabolic Genetics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Amal Al Teneiji
- Division of Metabolic Genetics, Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Gragnaniello V, Pijnappel PW, Burlina AP, In 't Groen SL, Gueraldi D, Cazzorla C, Maines E, Polo G, Salviati L, Di Salvo G, Burlina AB. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol Genet Metab Rep 2022; 33:100929. [PMID: 36310651 PMCID: PMC9597184 DOI: 10.1016/j.ymgmr.2022.100929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pompe disease (PD) is a progressive neuromuscular disorder caused by a lysosomal acid α-glucosidase (GAA) deficiency. Enzymatic replacement therapy is available, but early diagnosis by newborn screening (NBS) is essential for early treatment and better outcomes, especially with more severe forms. We present results from 7 years of NBS for PD and the management of infantile-onset (IOPD) and late-onset (LOPD) patients, during which we sought candidate predictive parameters of phenotype severity at baseline and during follow-up. We used a tandem mass spectrometry assay for α-glucosidase activity to screen 206,741 newborns and identified 39 positive neonates (0.019%). Eleven had two pathogenic variants of the GAA gene (3 IOPD, 8 LOPD); six carried variants of uncertain significance (VUS). IOPD patients were treated promptly and had good outcomes. LOPD and infants with VUS were followed; all were asymptomatic at the last visit (mean age 3.4 years, range 0.5–5.5). Urinary glucose tetrasaccharide was a useful and biomarker for rapidly differentiating IOPD from LOPD and monitoring response to therapy during follow-up. Our study, the largest reported to date in Europe, presents data from longstanding NBS for PD, revealing an incidence in North East Italy of 1/18,795 (IOPD 1/68,914; LOPD 1/25,843), and the absence of mortality in IOPD treated from birth. In LOPD, rigorous long-term follow-up is needed to evaluate the best time to start therapy. The high pseudodeficiency frequency, ethical issues with early LOPD diagnosis, and difficulty predicting phenotypes based on biochemical parameters and genotypes, especially in LOPD, need further study.
Collapse
Key Words
- Acid α-glucosidase
- CLIR, Collaborative Laboratory Integrated Reports
- CRIM, cross-reactive immunological material
- DBS, dried blood spot
- DMF, digital microfluidics
- ECG, electrocardiogram
- EF, ejection fraction
- EMG, electromyography
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GAA, acid α-glucosidase
- GMFM-88, Gross Motor Function Measure
- Glc4, glucose tetrasaccharide
- IOPD, infantile-onset Pompe disease
- ITI, immunotolerance induction
- LOPD, late-onset Pompe disease
- LVMI, left ventricular max index
- MFM-20, motor function measurement
- MRC, Medical Research Council Scale
- MRI, magnetic resonance imaging
- MS/MS, tandem mass spectrometry
- NBS, newborn screening
- Newborn screening
- PBMC, peripheral blood mononuclear cells
- PD, Pompe disease
- PPV, positive predictive value
- Pompe disease
- RUSP, Recommended Uniform Screening Panel
- Tandem mass-spectrometry
- Urinary tetrasaccharide
- VUS, variants of uncertain significance.
- nv, normal values
- rhGAA, recombinant human GAA
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Pim W.W.M. Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stijn L.M. In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Trento, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
- Corresponding author at: Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, via Orus 2/c, 35129 Padua, Italy.
| |
Collapse
|
9
|
Stevens D, Milani-Nejad S, Mozaffar T. Pompe Disease: a Clinical, Diagnostic, and Therapeutic Overview. Curr Treat Options Neurol 2022; 24:573-588. [PMID: 36969713 PMCID: PMC10035871 DOI: 10.1007/s11940-022-00736-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Purpose of Review
This review summarizes the clinical presentation and provides an update on the current strategies for diagnosis of Pompe disease. We will review the available treatment options. We examine newly approved treatments as well as upcoming therapies in this condition. We also provide commentary on the unmet needs in clinical management and research for this disease.
Recent Findings
In March 2015, Pompe disease was added to the Recommended Uniform Screening Panel (RUSP) and since then a number of states have added Pompe disease to their slate of diseases for their Newborn Screening (NBS) program. Data emerging from these programs is revising our knowledge of incidence of Pompe disease. In 2021, two randomized controlled trials involving new forms of enzyme replacement therapy (ERT) were completed and one new product is already FDA-approved and on the market, whereas the other product will come up for FDA review in the fall. Neither of the new ERT were shown to be superior to the standard of care product, alglucosidase. The long-term effectiveness of these newer forms of ERT is unclear. Newer versions of the ERT are in development in addition to multiple different strategies of gene therapy to deliver GAA, the gene responsible for producing acid alpha-glucosidase, the defective protein in Pompe Disease. Glycogen substrate reduction is also in development in Pompe disease and other glycogen storage disorders.
Summary
There are significant unmet needs as it relates to clinical care and therapeutics in Pompe disease as well as in research. The currently available treatments lose effectiveness over the long run and do not have penetration into neuronal tissues and inconsistent penetration in certain muscles. More definitive gene therapy and enzyme replacement strategies are currently in development and testing.
Collapse
Affiliation(s)
- David Stevens
- Departments of Neurology, 200 S. Manchester Avenue, Ste. 206, Orange, CA 92868, USA
| | - Shadi Milani-Nejad
- Departments of Neurology, 200 S. Manchester Avenue, Ste. 206, Orange, CA 92868, USA
| | - Tahseen Mozaffar
- Departments of Neurology, 200 S. Manchester Avenue, Ste. 206, Orange, CA 92868, USA
- Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, USA
- The Institute for Immunology, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
10
|
Lee NC, Chang KL, In 't Groen SLM, de Faria DOS, Huang HJ, Pijnappel WWMP, Hwu WL, Chien YH. Outcome of Later-Onset Pompe Disease Identified Through Newborn Screening. J Pediatr 2022; 244:139-147.e2. [PMID: 34995642 DOI: 10.1016/j.jpeds.2021.12.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To determine the outcomes of patients with later-onset Pompe disease (LOPD) identified through newborn screening (NBS). STUDY DESIGN A prospective observational cohort study was conducted from the initiation of Pompe disease NBS by following subjects every 3-12 months for motor development and biochemical markers. RESULTS Between 2005 and 2018, 39 of 994 975 newborns evaluated were classified as having LOPD based on low acid α-glucosidase (GAA) activity but no cardiac involvement at the time of screening. As of December 2020, 8 of these 39 infants (21%) were treated with enzyme replacement therapy owing to persistent elevation of creatine kinase (CK), cardiac involvement, or developmental delay. All subjects' physical performance and endurance improved after treatment. Subjects carrying c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] presented a phenotype of nonprogressive hypotonia, muscle weakness, and impairment in physical fitness tests, but they have not received treatment. CONCLUSIONS One-fifth of subjects identified through NBS as having LOPD developed symptoms after a follow-up of up to 15 years. NBS was found to facilitate the early detection and early treatment of those subjects. GAA variants c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] might not cause Pompe disease but still may affect skeletal muscle function.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Ling Chang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Stijn L M In 't Groen
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Douglas O S de Faria
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hsiang-Ju Huang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Tocan V, Mushimoto Y, Kojima-Ishii K, Matsuda A, Toda N, Toyomura D, Hirata Y, Sanefuji M, Sawada T, Sakai Y, Nakamura K, Ohga S. The earliest enzyme replacement for infantile-onset Pompe disease in Japan. Pediatr Int 2022; 64:e15286. [PMID: 36074069 DOI: 10.1111/ped.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Infantile-onset Pompe disease (IOPD) is the most severe phenotype of a lysosomal storage disorder caused by acid alpha-glucosidase (GAA) deficiency. An enzymatic newborn screening (NBS) program started regionally in Japan in 2013 for early enzyme replacement therapy (ERT). We report the ERT responses of the first NBS-identified Japanese IOPD case and of another case diagnosed prior to NBS, to discuss the problems of promptly starting ERT in Japan. METHODS Acid alpha-glucosidase activity was measured by fluorometric assay in both patients. The diagnosis of IOPD was confirmed by next-generation followed by Sanger-method sequencing (patient 1) or direct sequencing of polymerase chain reaction (PCR)-amplified products (patient 2) of the GAA gene. RESULTS A female infant identified by NBS had a novel out-of-frame (p.F181Dfs*6) variant and a reported pathogenic (p.R600C) variant, along with two pseudodeficiency variants. Enzyme replacement therapy was started at age 58 days when the infant had increased serum levels of creatine kinase and slight myocardial hypertrophy. Clinical and biochemical markers improved promptly. She has been alive and well without delayed development at age 14 months. Patient 2, a Japanese male, received a diagnosis of IOPD at age 5 months before the NBS era. He had a homozygotic variant of GAA (p.R608X), later registered as a cross-reactive immunological material (CRIM)-negative genotype, and developed a high titer of anti-rhGAA antibodies. The patient has survived myocardial hypertrophy with continuous respiratory support for 12 years of ERT. CONCLUSIONS Enzyme replacement therapy should not be delayed over the age of 2 months for reversible cardiac function, although CRIM-negative cases may hamper turnaround time reduction.
Collapse
Affiliation(s)
- Vlad Tocan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Akane Matsuda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Naoko Toda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Daisuke Toyomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Yuichiro Hirata
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan.,Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| |
Collapse
|
12
|
Sawada T, Kido J, Sugawara K, Momosaki K, Yoshida S, Kojima-Ishii K, Inoue T, Matsumoto S, Endo F, Ohga S, Hirose S, Nakamura K. Current status of newborn screening for Pompe disease in Japan. Orphanet J Rare Dis 2021; 16:516. [PMID: 34922579 PMCID: PMC8684119 DOI: 10.1186/s13023-021-02146-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
Background Pompe disease is an autosomal recessive inherited metabolic disorder caused by a deficiency of the acid α-glucosidase (GAA). Pompe disease manifests as an accumulation of lysosomal glycogen in the skeletal and heart muscle. We conducted newborn screening (NBS) for Pompe disease in Japan from April 2013 to October 2020 to determine the feasibility and utility of NBS for Pompe disease. Results From the 296,759 newborns whose enzyme activity was measured, 107 of which underwent GAA analysis, we found one patient with infantile-onset Pompe disease (IOPD) and seven with potential late-onset Pompe disease (LOPD). We identified 34 pseudodeficient individuals and 65 carriers or potential carriers. The frequency of patients with IOPD was similar to that in the United States, but significantly lower than that in Taiwan. One patient with IOPD underwent early enzyme replacement therapy within a month after birth before presenting exacerbated manifestations, whereas those with potential LOPD showed no manifestations during the follow-up period of six years. Conclusions The frequency of IOPD in Japan was similar to that in the United States, where NBS for Pompe disease is recommended. This indicates that NBS for Pompe disease may also be useful in Japan. Therefore, it should be used over a wider region in Japan. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02146-z.
Collapse
Affiliation(s)
- Takaaki Sawada
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Jun Kido
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| | - Keishin Sugawara
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Ken Momosaki
- Kumamoto-Ashikita Medical Center for Disabled Children, Kumamoto, Japan
| | | | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahito Inoue
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Pediatrics, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Fumio Endo
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.,Kumamoto-Ezuko Medical Center for Disabled Children, Kumamoto, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| |
Collapse
|
13
|
Wencel M, Shaibani A, Goyal NA, Dimachkie MM, Trivedi J, Johnson NE, Gutmann L, Wicklund MP, Bandyopadhay S, Genge AL, Freimer ML, Goyal N, Pestronk A, Florence J, Karam C, Ralph JW, Rasheed Z, Hays M, Hopkins S, Mozaffar T. Investigating Late-Onset Pompe Prevalence in Neuromuscular Medicine Academic Practices: The IPaNeMA Study. Neurol Genet 2021; 7:e623. [PMID: 36299500 PMCID: PMC9595038 DOI: 10.1212/nxg.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES We investigated the prevalence of late-onset Pompe disease (LOPD) in patients presenting to 13 academic, tertiary neuromuscular practices in the United States and Canada. METHODS All successive patients presenting with proximal muscle weakness or isolated hyperCKemia and/or neck muscle weakness to these 13 centers were invited to participate in the study. Whole blood was tested for acid alpha-glucosidase (GAA) assay through the fluorometric method, and all cases with enzyme levels of ≤10 pmoL/punch/h were reflexed to molecular testing for mutations in the GAA gene. Clinical and demographic information was abstracted from their clinical visit and, along with study data, entered into a purpose-built REDCap database, and analyzed at the University of California, Irvine. RESULTS GAA enzyme assay results were available on 906 of the 921 participants who consented for the study. LOPD was confirmed in 9 participants (1% prevalence). Another 9 (1%) were determined to have pseudodeficiency of GAA, whereas 19 (1.9%) were found to be heterozygous for a pathogenic GAA mutation (carriers). Of the definite LOPD participants, 8 (89%) were Caucasian and were heterozygous for the common leaky (IVS1) splice site mutation in the GAA gene (c -32-13T>G), with a second mutation that was previously confirmed to be pathogenic. DISCUSSION The prevalence of LOPD in undiagnosed patients meeting the criteria of proximal muscle weakness, high creatine kinase, and/or neck weakness in academic, tertiary neuromuscular practices in the United States and Canada is estimated to be 1%, with an equal prevalence rate of pseudodeficiency alleles. TRIAL REGISTRATION INFORMATION Clinical trial registration number: NCT02838368.
Collapse
|
14
|
A Systematic Review and Meta-Analysis of Enzyme Replacement Therapy in Late-Onset Pompe Disease. J Clin Med 2021; 10:jcm10214828. [PMID: 34768348 PMCID: PMC8584814 DOI: 10.3390/jcm10214828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Pompe disease (PD) is a glycogen storage disorder caused by deficient activity of acid alpha-glucosidase (GAA). We sought to review the latest available evidence on the safety and efficacy of recombinant human GAA enzyme replacement therapy (ERT) for late-onset PD (LOPD). METHODS We systematically searched the MEDLINE (via PubMed), Embase, and Cochrane databases for prospective clinical studies evaluating ERT for LOPD on pre-specified outcomes. A meta-analysis was also performed. RESULTS Of 1601 articles identified, 22 were included. Studies were heterogeneous and with very low certainty of evidence for most outcomes. The following outcomes showed improvements associated with GAA ERT, over a mean follow-up of 32.5 months: distance walked in the 6-min walking test (6MWT) (mean change 35.7 m (95% confidence interval [CI] 7.78, 63.75)), physical domain of the SF-36 quality of life (QOL) questionnaire (mean change 1.96 (95% CI 0.33, 3.59)), and time on ventilation (TOV) (mean change -2.64 h (95% CI -5.28, 0.00)). There were no differences between the pre- and post-ERT period for functional vital capacity (FVC), Walton and Gardner-Medwin Scale score, upper-limb strength, or total SF-36 QOL score. Adverse events (AEs) after ERT were mild in most cases. CONCLUSION Considering the limitations imposed by the rarity of PD, our data suggest that GAA ERT improves 6MWT, physical QOL, and TOV in LOPD patients. ERT was safe in the studied population. PROSPERO register: 135102.
Collapse
|
15
|
Dangouloff T, Boemer F, Servais L. Newborn screening of neuromuscular diseases. Neuromuscul Disord 2021; 31:1070-1080. [PMID: 34620514 DOI: 10.1016/j.nmd.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Neuromuscular diseases represent an heterogenous group of more than 400 diseases, with a very broad phenotypic spectrum. Given their rarity and complexity, neuromuscular diseases are often diagnosed with a very significant delay after which irreversible muscle damage may limit the efficacy of treatments when available. In this context, neonatal screening could constitute a solution for early detection and treatment. A systematic review of the literature in PubMed up to May 1, 2021, was conducted according to PRISMA guidelines, including classical neuromuscular diseases and diseases with a clear peripheral nervous system involvement (including central nervous system disease with severe neuropathy). We found seven diseases for which newborn screening data were reported: spinal muscular atrophy (9), Duchenne muscular dystrophy (9), Pompe disease (8), X-linked adrenoleukodystrophy (5), Krabbe disease (4), myotonic dystrophy type 1 (1), metachromatic leukodystrophy (1). The future of newborn screening for neuromuscular disorders pass through a global technological switch, from a biochemical to a genetic-based approach. The rapid development of therapy also requires the possibility to quickly adapt the list of treated conditions, to allow innovative therapies to achieve their best efficacy.
Collapse
Affiliation(s)
- Tamara Dangouloff
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium.
| | - François Boemer
- Biochemical Genetics Lab, Department of Human Genetics, CHU of Liège, University of Liège, Liège, Belgium
| | - Laurent Servais
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium; MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, UK.
| |
Collapse
|
16
|
Wasserstein MP, Orsini JJ, Goldenberg A, Caggana M, Levy PA, Breilyn M, Gelb MH. The future of newborn screening for lysosomal disorders. Neurosci Lett 2021; 760:136080. [PMID: 34166724 PMCID: PMC10387443 DOI: 10.1016/j.neulet.2021.136080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 10/25/2022]
Abstract
The goal of newborn screening is to enhance the outcome of individuals with serious, treatable disorders through early, pre-symptomatic detection. The lysosomal storage disorders (LSDs) comprise a group of more than 50 diseases with a combined frequency of approximately 1:7000. With the availability of existing and new enzyme replacement therapies, small molecule treatments and gene therapies, there is increasing interest in screening newborns for LSDs with the goal of reducing disease-related morbidity and mortality through early detection. Novel screening methods are being developed, including efforts to enhance accuracy of screening using an array of multi-tiered, genomic, statistical, and bioinformatic approaches. While NBS data for Gaucher disease, Fabry disease, Krabbe disease, MPS I, and Pompe disease has demonstrated the feasibility of widespread screening, it has also highlighted some of the complexities of screening for LSDs. These include the identification of infants with later-onset, untreatable, and uncertain phenotypes, raising interesting ethical concerns that should be addressed as part of the NBS implementation process. Taken together, these efforts will provide critical, detailed data to help guide objective, ethically sensitive decision-making about NBS for LSDs.
Collapse
Affiliation(s)
- Melissa P Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States.
| | - Joseph J Orsini
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Goldenberg
- Department of Bioethics, Case Western Reserve University, Cleveland, OH, United States
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Paul A Levy
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Margo Breilyn
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Basheeruddin K, Shao R, Balster F, Gardley P, Ashbaugh L. Newborn Screening for Krabbe Disease-Illinois Experience: Role of Psychosine in Diagnosis of the Disease. Int J Neonatal Screen 2021; 7:ijns7020024. [PMID: 34065072 PMCID: PMC8162337 DOI: 10.3390/ijns7020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023] Open
Abstract
Population-based newborn screening for Krabbe disease was initiated by measurement of galactocerebrosidase (GALC) activity in the state of Illinois in December 2017. Due to the poor specificity of GALC for the diagnosis of Krabbe disease, second-tier testing services were provided to reduce the false positive rates for disease monitoring. Using ultra-pressure liquid chromatography coupled to mass spectrometry assay, a total of 497,147 newborns were screened. In total, 288 infants' specimens (0.06%) having reduced GALC activity were sent out for second-tier testing to a reference laboratory. All newborns' reduced GALC specimens were tested for psychosine levels, the presence of a 30-kb deletion and GALC sequencing. The results showed that two infants had elevated psychosine levels (10 and 35 nM) and were referred immediately for evaluation and treatment for Infantile Krabbe disease, and six infants had intermediate PSY levels (≥2 to 5 nM) and are under observation as suspected candidates for late-onset Krabbe disease. In addition, 178 infants had pseudodeficiency alleles, all having psychosine levels < 2.0 nM. Our data show that a high percentage of reduced GALC activity (62%) was due to the presence of pseudodeficiency alleles in the GALC gene. In conclusion, incorporation of psychosine measurements can identify infants with infantile Krabbe disease and probable late-onset Krabbe infants. Furthermore, Krabbe disease screening can be achieved at public health laboratories, and infants with infantile Krabbe disease can be diagnosed in timely manner for better outcome.
Collapse
Affiliation(s)
- Khaja Basheeruddin
- Newborn Screening Laboratory, Illinois Department of Public Health, Chicago, IL 60612, USA; (R.S.); (F.B.); (P.G.)
- Correspondence:
| | - Rong Shao
- Newborn Screening Laboratory, Illinois Department of Public Health, Chicago, IL 60612, USA; (R.S.); (F.B.); (P.G.)
| | - Fran Balster
- Newborn Screening Laboratory, Illinois Department of Public Health, Chicago, IL 60612, USA; (R.S.); (F.B.); (P.G.)
| | - Pearlie Gardley
- Newborn Screening Laboratory, Illinois Department of Public Health, Chicago, IL 60612, USA; (R.S.); (F.B.); (P.G.)
| | - Laura Ashbaugh
- Office of Health Promotion, Illinois Department of Public Health, Springfield, IL 62671, USA;
| |
Collapse
|
18
|
Park KS. Carrier frequency and predicted genetic prevalence of Pompe disease based on a general population database. Mol Genet Metab Rep 2021; 27:100734. [PMID: 33717985 PMCID: PMC7933537 DOI: 10.1016/j.ymgmr.2021.100734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background The genetic prevalence of Pompe disease was estimated based on the proportion of individuals who have a causative genotype in a general population database. In addition, clinical severity for causative genotypes was assessed based on currently available locus-specific databases (LSDBs), which contain information on both genotype and clinical severity. Methods Genetic variants in the GAA gene in the Genome Aggregation Database (gnomAD) (v2.1.1) were analyzed in combination with LSDBs of ClinVar, ClinGen Evidence Repository, Pompe disease GAA variant database, and the Pompe Registry. Carrier frequency (CF) and predicted genetic prevalence (pGP) were estimated. Results Of 7 populations, East Asian and African showed higher proportions of pathogenic or likely pathogenic variants (PLPVs) associated with classic infantile-onset Pompe disease. Total CF and pGP in the overall population were 1.3% (1 in 77) and 1:23,232, respectively. The highest pGP was observed in the East Asian population at 1:12,125, followed by Non-Finnish European (1:13,756), Ashkenazi Jewish (1:22,851), African/African-American (1:26,560), Latino/Admixed American (1:57,620), South Asian (1:93,087), and Finnish (1:1,056,444). Conclusions Pompe disease has a higher pGP (1:23,232) than earlier accepted (1:40,000). The pGP for Pompe disease was expectedly wide by population and consistent with previous reports based on newborn screening programs (approximately 1:10,000-1:30,000).
Collapse
Affiliation(s)
- Kyung Sun Park
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
19
|
Pajares García S, López Galera RM, Marín Soria JL, Argudo Ramírez A, González de Aledo-Castillo JM, Ribes Rubió A, Prats Viedma B, Asso Ministral L, García-Villoria J. [Impact of the inclusion of second-tier tests in the newborn screening program of Catalonia and in other international programs.]. Rev Esp Salud Publica 2020; 94:e202012158. [PMID: 33323922 PMCID: PMC11583059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE Newborn screening programmes (NBSP) have experienced a qualitative breakthrough due to the implementation of tandem mass spectrometry. However, the tests used give rise to false positives (FP) generating an excessive request for second samples with the consequent anxiety of the families. In order to avoid this problem several programmes have developed second-tier tests (2TT). METHODS This article presents our experience in the implementation of 2TT in the NBSP of Catalonia, as well as in other international programmes. RESULTS From 2004 to the present, 2TT tests have been developed for more than 30 diseases. The use of 2TT helps to decrease the FP rate and increase the positive predictive value (PPV). In the NBSP of Catalonia, the implementation of 2TT for the detection of methylmalonic and propionic acidemias, homocystinurias, maple syrup disease and citrulinaemia, has managed to increase the PPV to 95% and decrease the PF rate to less than 0.01%. In cystic fibrosis, the application of 2TT slightly increases PPV but with a significant decrease in the request for second samples and in the number of cases referred to clinical units. CONCLUSIONS The introduction of 2TT in the NBSP allows to reduce considerably the FP, decreases the number of requested samples, as well as both anxiety and stress of the families, at the same time that the hospital costs are reduced and the PPV is increased, improving notably the efficiency of the NBSP.
Collapse
Affiliation(s)
- Sonia Pajares García
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Ciber de Enfermedades Raras (CIBERER). España
| | - Rosa Mª López Galera
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Barcelona. España
| | - Jose Luis Marín Soria
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
| | - Ana Argudo Ramírez
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
| | | | - Antonia Ribes Rubió
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Ciber de Enfermedades Raras (CIBERER). España
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Barcelona. España
| | - Blanca Prats Viedma
- Servicio de Salud Maternoinfantil. Subdirección General de Promoción de la Salud. Agencia de Salud Pública de Cataluña. Departamento de Salud. Generalitat de Catalunya. Barcelona. España
| | - Laia Asso Ministral
- Servicio de Salud Maternoinfantil. Subdirección General de Promoción de la Salud. Agencia de Salud Pública de Cataluña. Departamento de Salud. Generalitat de Catalunya. Barcelona. España
| | - Judit García-Villoria
- Sección Errores Congénitos del Metabolismo-IBC. Servicio de Bioquímica y Genética Molecular. Hospital Clínic de Barcelona. Barcelona. España
- Ciber de Enfermedades Raras (CIBERER). España
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Barcelona. España
| |
Collapse
|
20
|
Newborn Screening for Pompe Disease: Pennsylvania Experience. Int J Neonatal Screen 2020; 6:ijns6040089. [PMID: 33202836 PMCID: PMC7712483 DOI: 10.3390/ijns6040089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pennsylvania started newborn screening for Pompe disease in February 2016. Between February 2016 and December 2019, 531,139 newborns were screened. Alpha-Glucosidase (GAA) enzyme activity is measured by flow-injection tandem mass spectrometry (FIA/MS/MS) and full sequencing of the GAA gene is performed as a second-tier test in all newborns with low GAA enzyme activity [<2.10 micromole/L/h]. A total of 115 newborns had low GAA enzyme activity and abnormal genetic testing and were referred to metabolic centers. Two newborns were diagnosed with Infantile Onset Pompe Disease (IOPD), and 31 newborns were confirmed to have Late Onset Pompe Disease (LOPD). The incidence of IOPD + LOPD was 1:16,095. A total of 30 patients were compound heterozygous for one pathogenic and one variant of unknown significance (VUS) mutation or two VUS mutations and were defined as suspected LOPD. The incidence of IOPD + LOPD + suspected LOPD was 1: 8431 in PA. We also found 35 carriers, 15 pseudodeficiency carriers, and 2 false positive newborns.
Collapse
|
21
|
Smith LD, Bainbridge MN, Parad RB, Bhattacharjee A. Second Tier Molecular Genetic Testing in Newborn Screening for Pompe Disease: Landscape and Challenges. Int J Neonatal Screen 2020; 6:32. [PMID: 32352041 PMCID: PMC7189780 DOI: 10.3390/ijns6020032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Pompe disease (PD) is screened by a two tier newborn screening (NBS) algorithm, the first tier of which is an enzymatic assay performed on newborn dried blood spots (DBS). As first tier enzymatic screening tests have false positive results, an immediate second tier test on the same sample is critical in resolving newborn health status. Two methodologies have been proposed for second tier testing: (a) measurement of enzymatic activities such as of Creatine/Creatinine over alpha-glucosidase ratio, and (b) DNA sequencing (a molecular genetics approach), such as targeted next generation sequencing. (tNGS). In this review, we discuss the tNGS approach, as well as the challenges in providing second tier screening and follow-up care. While tNGS can predict genotype-phenotype effects when known, these advantages may be diminished when the variants are novel, of unknown significance or not discoverable by current test methodologies. Due to the fact that criticisms of screening algorithms that utilize tNGS are based on perceived complexities, including variant detection and interpretation, we clarify the actual limitations and present the rationale that supports optimizing a molecular genetic testing approach with tNGS. Second tier tNGS can benefit clinical decision-making through the use of the initial NBS DBS punch and rapid turn-around time methodology for tNGS, that includes copy number variant analysis, variant effect prediction, and variant 'cut-off' tools for the reduction of false positive results. The availability of DNA sequence data will contribute to the improved understanding of genotype-phenotype associations and application of treatment. The ultimate goal of second tier testing should enable the earliest possible diagnosis for the earliest initiation of the most effective clinical interventions in infants with PD.
Collapse
Affiliation(s)
- Laurie D. Smith
- Department of Pediatrics, UNC Hospitals, Chapel Hill, NC 27599, USA;
- Laboratory Services Division, Baebies, Inc., Durham, NC 27709, USA
| | - Matthew N. Bainbridge
- Codified Genomics, Houston, TX 77004, USA;
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Richard B. Parad
- Department of Pediatric Newborn Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|