1
|
Mares Beltran CF, Tise CG, Barrick R, Niehaus AD, Sponberg R, Chang R, Enns GM, Abdenur JE. Newborn Screening for X-Linked Adrenoleukodystrophy (X-ALD): Biochemical, Molecular, and Clinical Characteristics of Other Genetic Conditions. Genes (Basel) 2024; 15:838. [PMID: 39062617 PMCID: PMC11275617 DOI: 10.3390/genes15070838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The state of California (CA) added X-linked adrenoleukodystrophy (X-ALD) to newborn screening (NBS) in 2016 via the measurement of C26:0-lysophosphatidylcholine (C26:0-LPC) in a two-tier fashion, followed by sequencing of the ABCD1 gene. This has resulted in the identification of individuals with genetic conditions beyond X-ALD that can also result in elevated C26:0-LPC by NBS. We describe the biochemical, molecular, and clinical characteristics of nine patients from two metabolic centers in California who screened positive by NBS for elevated C26:0-LPC between 2016 and 2022 and were ultimately diagnosed with a genetic condition other than X-ALD. Seven individuals were diagnosed with Zellweger spectrum disorder (ZSD) due to biallelic variants in PEX genes. One male was diagnosed with Klinefelter syndrome and one female was found to have an X chromosome contiguous gene deletion syndrome after the identification of a heterozygous VUS and hemizygous VUS variant in ABCD1, respectively. Patients with ZSD had significantly higher first- and second-tier C26:0-LPC levels compared to the two non-ZSD cases. Identification of children with ZSD and atypical patterns of ABCD1 variants is a secondary benefit of NBS for X-ALD, leading to earlier diagnosis, prompt therapeutic initiation, and more accurate genetic counseling. As screening for X-ALD continues via the measurement of C26:0-LPC, our knowledge of additional genetic conditions associated with elevated C26:0-LPC will continue to advance, allowing for increased recognition of other genetic disorders for which early intervention is warranted.
Collapse
Affiliation(s)
- Carlos F. Mares Beltran
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
- Division of Medical Genetics, Albany Medical Center (AMC), Albany, NY 12208, USA
| | - Christina G. Tise
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA
| | - Rebekah Barrick
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| | - Annie D. Niehaus
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA
| | - Rebecca Sponberg
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| | - Richard Chang
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| | - Gregory M. Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA
| | - Jose E. Abdenur
- Division of Metabolic Disorders, Children’s Hospital of Orange County (CHOC), Orange, CA 92868, USA
| |
Collapse
|
2
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
3
|
Zhu X, Maier G, Panda S. Learning from circadian rhythm to transform cancer prevention, prognosis, and survivorship care. Trends Cancer 2024; 10:196-207. [PMID: 38001006 PMCID: PMC10939944 DOI: 10.1016/j.trecan.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Circadian timekeeping mechanisms and cell cycle regulation share thematic biological principles in responding to signals, repairing cellular damage, coordinating metabolism, and allocating cellular resources for optimal function. Recent studies show interactions between cell cycle regulators and circadian clock components, offering insights into potential cancer treatment approaches. Understanding circadian control of metabolism informs timing for therapies to reduce adverse effects and enhance treatment efficacy. Circadian adaptability to lifestyle factors, such as activity, sleep, and nutrition sheds light on their impact on cancer. Leveraging circadian regulatory mechanisms for cancer prevention and care is vital, as most risk stems from modifiable lifestyles. Monitoring circadian factors aids risk assessment and targeted interventions across the cancer care continuum.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geraldine Maier
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
4
|
Videbæk C, Melgaard L, Lund AM, Grønborg SW. Newborn screening for adrenoleukodystrophy: International experiences and challenges. Mol Genet Metab 2023; 140:107734. [PMID: 37979237 DOI: 10.1016/j.ymgme.2023.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
X-linked adrenoleukodystrophy (XALD) is the most common leukodystrophy. It has an estimated incidence of around 1/17.000, and a variable phenotype. Following the passage of Aidens Law, New York became the first state to implement a newborn screening for XALD in 2013. Since then, 38 American states, Taiwan, and the Netherlands have included XALD in their NBS program, and Japan and Italy have ongoing pilot studies. Screening for XALD allows for early, potentially lifesaving treatment of adrenal insufficiency and cerebral demyelination but is also a complex subject, due to our limited understanding of the natural history and lack of prognostic biomarkers. Screening protocols and algorithms vary between countries and states, and results and experiences gained so far are important for the future implementation of XALD NBS in other countries. In this review, we have examined the algorithms, methodologies, and outcomes used, as well as how common challenges are addressed in countries/states that have experience using NBS for XALD. We identified 14 peer-reviewed reports on NBS for XALD. All studies presented methods for detecting XALD at birth by NBS using a combination of mass spectrometry and ABCD1 gene sequencing. This has allowed for early surveillance of presymptomatic XALD patients, and the possibility for early detection and timely treatment of XALD manifestations. Obstacles to NBS for XALD include how to deal with variants of unknown significance, whether to screen females, and the ethical concerns of an NBS for a disease where we have limited understanding of natural history and phenotype/genotype correlation.
Collapse
Affiliation(s)
- Cecilie Videbæk
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Lars Melgaard
- Danish Center for Neonatal Screening, Clinical Mass Spectrometry, Statens Serum Institut, Denmark
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Sabine Weller Grønborg
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
5
|
Bonaventura E, Alberti L, Lucchi S, Cappelletti L, Fazzone S, Cattaneo E, Bellini M, Izzo G, Parazzini C, Bosetti A, Di Profio E, Fiore G, Ferrario M, Mameli C, Sangiorgio A, Masnada S, Zuccotti GV, Veggiotti P, Spaccini L, Iascone M, Verduci E, Cereda C, Tonduti D. Newborn screening for X-linked adrenoleukodystrophy in Italy: Diagnostic algorithm and disease monitoring. Front Neurol 2023; 13:1072256. [PMID: 36698902 PMCID: PMC9869129 DOI: 10.3389/fneur.2022.1072256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction X-linked adrenoleukodystrophy (X-ALD) is the most common inherited peroxisomal disorder caused by variants in the ABCD1 gene. The main phenotypes observed in men with X-ALD are primary adrenal insufficiency, adrenomyeloneuropathy, and cerebral ALD (cALD). Cerebral ALD consists of a demyelinating progressive cerebral white matter (WM) disease associated with rapid clinical decline and is fatal if left untreated. Hematopoietic stem cell transplantation is the standard treatment for cALD as it stabilizes WM degeneration when performed early in the disease. For this reason, early diagnosis is crucial, and several countries have already implemented their newborn screening programs (NBS) with the assessment of C26:0-lysophosphatidylcholine (C26:0-LPC) values as screening for X-ALD. Methods In June 2021, an Italian group in Lombardy launched a pilot study for the implementation of X-ALD in the Italian NBS program. A three-tiered approach was adopted, and it involved quantifying the values of C26:0-LPC and other metabolites in dried blood spots with FIA-MS/MS first, followed by the more specific ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) technique and, finally, the genetic confirmation via focused NGS. Discussion Genetically confirmed patients are set to undergo a follow-up protocol and are periodically evaluated to promptly start a specific treatment if and when the first signs of brain damage appear, as suggested by international guidelines. A specific disease monitoring protocol has been created based on literature data and personal direct experience. Conclusion The primary aim of this study was to develop a model able to improve the early diagnosis and subsequent follow-up and timely treatment of X-ALD. Ethics The study was approved by the local ethics committee. The research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.
Collapse
Affiliation(s)
- Eleonora Bonaventura
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
| | - Luisella Alberti
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Simona Lucchi
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Laura Cappelletti
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Salvatore Fazzone
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Elisa Cattaneo
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Clinical Genetics Unit, V. Buzzi Children's Hospital, Milan, Italy
| | - Matteo Bellini
- Molecular Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giana Izzo
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Paediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Cecilia Parazzini
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Paediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Alessandra Bosetti
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Elisabetta Di Profio
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Giulia Fiore
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Matilde Ferrario
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Chiara Mameli
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Arianna Sangiorgio
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Silvia Masnada
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Pierangelo Veggiotti
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Luigina Spaccini
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Clinical Genetics Unit, V. Buzzi Children's Hospital, Milan, Italy
| | - Maria Iascone
- Molecular Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Elvira Verduci
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Paediatrics, V. Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Newborn Screening and Inherited Metabolic Disease Unit, V. Buzzi Children Hospital, Milan, Italy
| | - Davide Tonduti
- Child Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Khan ZUN, Jafri L, Hall PL, Schultz MJ, Ahmed S, Khan AH, Majid H. Utilizing augmented artificial intelligence for aminoacidopathies using collaborative laboratory integrated reporting- A cross-sectional study. Ann Med Surg (Lond) 2022; 82:104651. [PMID: 36268324 PMCID: PMC9577660 DOI: 10.1016/j.amsu.2022.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Plasma amino acids profiling can aid in the screening and diagnosis of aminoacidopathies. The goal of the current study was to analyze and report the metabolic profiles of plasma amino acid (PAA) and additionally to compare PAA-reference intervals (RI) from Pakistan with more countries utilizing Clinical Laboratory Integrated Reports (CLIR). Methods This was a cross sectional prospective single center study. Twenty-two amino acids were analyzed in each sample received for one year at the clinical laboratory. Data was divided into reference and case data files after interpretation by a team of pathologists and technologists. All PAA samples were analyzed using ion-exchange high-performance chromatography. The CLIR application of Amino Acid in Plasma (AAQP) was used for statistical analysis for both data sets and post-analytical interpretive tools using a single condition tool was applied. Result The majority of 92% (n = 1913) of PAA profiles out of the total 2081 tests run were non-diagnostic; the PAA values were within the age-specific RI. The PAA median was in close comparison close to the 50th percentile of reference data available in CLIR software. Out of the total 2081 tests run, one hundred and sixty-eight had abnormal PAA levels; 27.38% were labeled as non-fasting samples, and the main aminoacidopathies identified were Phenylketonuria and Maple Syrup Urine Disorder. Conclusion An agreement of >95% was observed between the reporting done by the pathologists and technologists’ team and then after the application of CLIR. Augmented artificial intelligence using CLIR can improve the accuracy of reporting rare aminoacidopathies in a developing country like ours. Plasma amino acids helps in diagnosing and monitoring of various aminoacidopathies. Few aminoacidopathies present with a grossly abnormal investigation profile, with few diseases having subtle deviations. Their is 98% concordance of diagnosis concordance of diagnosis of aminoacidopathies between our lab and CLIR. CLIR tools can be utilized in a newborn screening program for screening and diagnosis in future.
Collapse
|
7
|
Matteson J, Sciortino S, Feuchtbaum L, Bishop T, Olney RS, Tang H. Adrenoleukodystrophy Newborn Screening in California Since 2016: Programmatic Outcomes and Follow-Up. Int J Neonatal Screen 2021; 7:ijns7020022. [PMID: 33920672 PMCID: PMC8167547 DOI: 10.3390/ijns7020022] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
X-linked adrenoleukodystrophy (ALD) is a recent addition to the Recommended Uniform Screening Panel, prompting many states to begin screening newborns for the disorder. We provide California's experience with ALD newborn screening, highlighting the clinical and epidemiological outcomes observed as well as program implementation challenges. In this retrospective cohort study, we examine ALD newborn screening results and clinical outcomes for 1,854,631 newborns whose specimens were received by the California Genetic Disease Screening Program from 16 February 2016 through 15 February 2020. In the first four years of ALD newborn screening in California, 355 newborns screened positive for ALD, including 147 (41%) with an ABCD1 variant of uncertain significance (VUS) and 95 males diagnosed with ALD. After modifying cutoffs, we observed an ALD birth prevalence of 1 in 14,397 males. Long-term follow-up identified 14 males with signs of adrenal involvement. This study adds to a growing body of literature reporting on outcomes of newborn screening for ALD and offering a glimpse of what other large newborn screening programs can expect when adding ALD to their screening panel.
Collapse
|