1
|
Shah N, Brlek P, Bulić L, Brenner E, Škaro V, Skelin A, Projić P, Shah P, Primorac D. Genomic sequencing for newborn screening: current perspectives and challenges. Croat Med J 2024; 65:261-267. [PMID: 38868972 PMCID: PMC11157259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Traditional newborn screening (NBS) serves as a critical tool in identifying conditions that may impact a child's health from an early stage. Newborn sequencing (NBSeq), the comprehensive analysis of an infant's genome, holds immense promise for revolutionizing health care throughout the lifespan. NBSeq allows for early detection of genetic disease risk and precision personalized medicine. The rapid evolution of DNA sequencing technologies and increasing affordability have spurred numerous endeavors to explore the potential of whole-genome sequencing in newborn screening. However, this transformative potential cannot be realized without challenges. Ethical aspects must be carefully navigated to safeguard individual rights and maintain public trust. Moreover, genomic data interpretation poses complex challenges due to its amount, the presence of variants of uncertain significance, and the dynamic nature of our understanding of genetics. Implementation hurdles, including cost, infrastructure, and specialized expertise, also present barriers to the widespread adoption of NBSeq. Addressing these challenges requires collaboration among clinicians, researchers, policymakers, ethicists, and stakeholders across various sectors. Robust frameworks for informed consent, data protection, and governance are essential. Advances in bioinformatics, machine learning, and genomic interpretation are crucial for translation into actionable clinical insights. Scalability and improving downstream health care access are vital for equitability, particularly in underserved communities. By fostering interdisciplinary collaboration, advancing technology and infrastructure, and upholding ethical principles, we can unlock the full potential of NBSeq as a tool for precision medicine and pave the way toward a future where every child has the opportunity for a healthier, genomics-informed start to life.
Collapse
Affiliation(s)
| | - Petar Brlek
- Petar Brlek, St. Catherine Specialty Hospital, Ul. kneza Branimira 71E, 10000, Zagreb, Croatia,
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers (Basel) 2024; 16:2017. [PMID: 38893137 PMCID: PMC11171256 DOI: 10.3390/cancers16112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As next-generation sequencing (NGS) has become more widely used, germline and rare genetic variations responsible for inherited illnesses, including cancer predisposition syndromes (CPSs) that account for up to 10% of childhood malignancies, have been found. The CPSs are a group of germline genetic disorders that have been identified as risk factors for pediatric cancer development. Excluding a few "classic" CPSs, there is no agreement regarding when and how to conduct germline genetic diagnostic studies in children with cancer due to the constant evolution of knowledge in NGS technologies. Various clinical screening tools have been suggested to aid in the identification of individuals who are at greater risk, using diverse strategies and with varied outcomes. We present here an overview of the primary clinical and molecular characteristics of various CPSs and summarize the existing clinical genomics data on the prevalence of CPSs in pediatric cancer patients. Additionally, we discuss several ethical issues, challenges, limitations, cost-effectiveness, and integration of genomic newborn screening for CPSs into a healthcare system. Furthermore, we assess the effectiveness of commonly utilized decision-support tools in identifying patients who may benefit from genetic counseling and/or direct genetic testing. This investigation highlights a tailored and systematic approach utilizing medical newborn screening tools such as the genome sequencing of high-risk newborns for CPSs, which could be a practical and cost-effective strategy in pediatric cancer care.
Collapse
Affiliation(s)
- BalaSubramani Gattu Linga
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | | | - Thomas Farrell
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | - Nader Al-Dewik
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha 0974, Qatar
- Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London, Kingston upon Thames, Surrey, London KT1 2EE, UK
| | - M. Walid Qoronfleh
- Healthcare Research & Policy Division, Q3 Research Institute (QRI), Ann Arbor, MI 48197, USA
| |
Collapse
|
3
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
4
|
Eskandari SK, Revenich EGM, Pot DJ, de Boer F, Bierings M, van Spronsen FJ, van Hasselt PM, Lindemans CA, Lubout CMA. High-Dose ERT, Rituximab, and Early HSCT in an Infant with Wolman's Disease. N Engl J Med 2024; 390:623-629. [PMID: 38354141 DOI: 10.1056/nejmoa2313398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Elisabeth G M Revenich
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Dirk J Pot
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Foekje de Boer
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Marc Bierings
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Francjan J van Spronsen
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Peter M van Hasselt
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Caroline A Lindemans
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| | - Charlotte M A Lubout
- From the Department of Metabolic Diseases, Beatrix Children's Hospital (S.K.E., F.B., F.J.S., C.M.A.L.), and the Department of Surgery (S.K.E.), University Medical Center (UMC) Groningen, Groningen, the Division of Pediatrics (E.G.M.R., M.B., P.M.H., C.A.L.) and the Department of Metabolic Diseases (P.M.H.), UMC Utrecht, and the Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology (E.G.M.R., M.B., C.A.L.), Utrecht, and the Department of Pediatrics, Gelre Hospital, Apeldoorn (D.J.P.) - all in the Netherlands
| |
Collapse
|
5
|
Veldman A, Kiewiet MBG, Westra D, Bosch AM, Brands MMG, de Coo RIFM, Derks TGJ, Fuchs SA, van den Hout JMP, Huidekoper HH, Kluijtmans LAJ, Koop K, Lubout CMA, Mulder MF, Panis B, Rubio-Gozalbo ME, de Sain-van der Velden MG, Schaefers J, Schreuder AB, Visser G, Wevers RA, Wijburg FA, Heiner-Fokkema MR, van Spronsen FJ. A Delphi Survey Study to Formulate Statements on the Treatability of Inherited Metabolic Disorders to Decide on Eligibility for Newborn Screening. Int J Neonatal Screen 2023; 9:56. [PMID: 37873847 PMCID: PMC10594494 DOI: 10.3390/ijns9040056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
The Wilson and Jungner (W&J) and Andermann criteria are meant to help select diseases eligible for population-based screening. With the introduction of next-generation sequencing (NGS) methods for newborn screening (NBS), more inherited metabolic diseases (IMDs) can technically be included, and a revision of the criteria was attempted. This study aimed to formulate statements and investigate whether those statements could elaborate on the criterion of treatability for IMDs to decide on eligibility for NBS. An online Delphi study was started among a panel of Dutch IMD experts (EPs). EPs evaluated, amended, and approved statements on treatability that were subsequently applied to 10 IMDs. After two rounds of Delphi, consensus was reached on 10 statements. Application of these statements selected 5 out of 10 IMDs proposed for this study as eligible for NBS, including 3 IMDs in the current Dutch NBS. The statement: 'The expected benefit/burden ratio of early treatment is positive and results in a significant health outcome' contributed most to decision-making. Our Delphi study resulted in 10 statements that can help to decide on eligibility for inclusion in NBS based on treatability, also showing that other criteria could be handled in a comparable way. Validation of the statements is required before these can be applied as guidance to authorities.
Collapse
Affiliation(s)
- Abigail Veldman
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - M. B. Gea Kiewiet
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Dineke Westra
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Marion M. G. Brands
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - René I. F. M. de Coo
- Department of Toxicogenomics, Unit Clinical Genomics, MHeNs School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Terry G. J. Derks
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Sabine A. Fuchs
- Department of Metabolic Diseases, University Medical Center Utrecht, Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Johanna. M. P. van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hidde H. Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leo A. J. Kluijtmans
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands (R.A.W.)
| | - Klaas Koop
- Department of Metabolic Diseases, University Medical Center Utrecht, Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Charlotte M. A. Lubout
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Margaretha F. Mulder
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Bianca Panis
- Department of Pediatrics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - M. Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | | | - Jaqueline Schaefers
- Department of Pediatrics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Andrea B. Schreuder
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Gepke Visser
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
- Department of Metabolic Diseases, University Medical Center Utrecht, Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Ron A. Wevers
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands (R.A.W.)
| | - Frits A. Wijburg
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - M. Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| | - Francjan J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9718 GZ Groningen, The Netherlands
| |
Collapse
|
6
|
Ferlini A, Gross ES, Garnier N. Rare diseases' genetic newborn screening as the gateway to future genomic medicine: the Screen4Care EU-IMI project. Orphanet J Rare Dis 2023; 18:310. [PMID: 37794437 PMCID: PMC10548672 DOI: 10.1186/s13023-023-02916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Following the reverse genetics strategy developed in the 1980s to pioneer the identification of disease genes, genome(s) sequencing has opened the era of genomics medicine. The human genome project has led to an innumerable series of applications of omics sciences on global health, from which rare diseases (RDs) have greatly benefited. This has propelled the scientific community towards major breakthroughs in disease genes discovery, in technical innovations in bioinformatics, and in the development of patients' data registries and omics repositories where sequencing data are stored. Rare diseases were the first diseases where nucleic acid-based therapies have been applied. Gene therapy, molecular therapy using RNA constructs, and medicines modulating transcription or translation mechanisms have been developed for RD patients and started a new era of medical science breakthroughs. These achievements together with optimization of highly scalable next generation sequencing strategies now allow movement towards genetic newborn screening. Its applications in human health will be challenging, while expected to positively impact the RD diagnostic journey. Genetic newborn screening brings many complexities to be solved, technical, strategic, ethical, and legal, which the RD community is committed to address. Genetic newborn screening initiatives are therefore blossoming worldwide, and the EU-IMI framework has funded the project Screen4Care. This large Consortium will apply a dual genetic and digital strategy to design a comprehensive genetic newborn screening framework to be possibly translated into the future health care.
Collapse
Affiliation(s)
- Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | | | | |
Collapse
|
7
|
Belaramani KM, Fung CW, Kwok AMK, Lee SYR, Yau EKC, Luk HM, Mak CM, Yeung MCW, Ngan OMY. Public and Healthcare Provider Receptivity toward the Retention of Dried Blood Spot Cards and Their Usage for Extended Genetic Testing in Hong Kong. Int J Neonatal Screen 2023; 9:45. [PMID: 37606482 PMCID: PMC10443280 DOI: 10.3390/ijns9030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Dried blood spot (DBS) cards from newborn screening (NBS) programs represent a wealth of biological data. They can be stored easily for a long time, have the potential to support medical and public health research, and have secondary usages such as quality assurance and forensics, making it the ideal candidate for bio-banking. However, worldwide policies vary with regard to the duration of storage of DBS cards and how it can be used. Recent advances in genomics have also made it possible to perform extended genetic testing on DBS cards in the newborn period to diagnose both actionable and non-actionable childhood and adult diseases. Both storage and secondary uses of DBS cards raise many ethical, clinical, and social questions. The openness of the key stakeholders, namely, parents and healthcare providers (HCPs), to store the DBS cards, and for what duration and purposes, and to extended genetic testing is largely dependent on local cultural-social-specific factors. The study objective is to assess the parents' and HCPs' awareness and receptivity toward DBS retention, its secondary usage, and extended genetic testing. A cross-sectional, self-administrated survey was adopted at three hospitals, out of which two were public hospitals with maternity services, between June and December 2022. In total, 452 parents and 107 HCPs completed and returned the survey. Overall, both HCPs and parents were largely knowledgeable about the potential benefits of DBS card storage for a prolonged period and its secondary uses, and they supported extended genetic testing. Knowledge gaps were found in respondents with a lower education level who did not know that a DBS card could be stored for an extended period (p < 0.001), could support scientific research (p = 0.033), and could aid public health research, and future policy implementation (p = 0.030). Main concerns with regard to DBS card storage related to potential privacy breaches and anonymity (Parents 70%, HCPs 60%). More parents, compared to HCPs, believed that storing DBS cards for secondary research does not lead to a reciprocal benefit to the child (p < 0.005). Regarding extended genetic testing, both groups were receptive and wanted to know about actionable childhood- and adult-onset diseases. More parents (four-fifths) rather than HCPs (three-fifths) were interested in learning about a variant with unknown significance (p < 0.001). Our findings report positive support from both parents and HCPs toward the extended retention of DBS cards for secondary usage and for extended genetic testing. However, more efforts to raise awareness need to be undertaken in addition to addressing the ethical concerns of both parents and HCPs to pave the way forward toward policy-making for DBS bio-banking and extended genetic testing in Hong Kong.
Collapse
Affiliation(s)
- Kiran Moti Belaramani
- Metabolic Medicine Unit, Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Cheuk Wing Fung
- Metabolic Medicine Unit, Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Anne Mei Kwun Kwok
- Metabolic Medicine Unit, Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Shing Yan Robert Lee
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Eric Kin Cheong Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Ho Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children’s Hospital, Hong Kong, China
| | - Chloe Miu Mak
- Newborn Screening Laboratory, Division of Chemical Pathology, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, China
| | - Matthew Chun Wing Yeung
- Newborn Screening Laboratory, Division of Chemical Pathology, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, China
| | - Olivia Miu Yung Ngan
- Medical Ethics and Humanities Unit, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Centre for Medical Ethics and Law, Faculty of Law and LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
la Marca G, Carling RS, Moat SJ, Yahyaoui R, Ranieri E, Bonham JR, Schielen PCJI. Current State and Innovations in Newborn Screening: Continuing to Do Good and Avoid Harm. Int J Neonatal Screen 2023; 9:ijns9010015. [PMID: 36975853 PMCID: PMC10057559 DOI: 10.3390/ijns9010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
In 1963, Robert Guthrie's pioneering work developing a bacterial inhibition assay to measure phenylalanine in dried blood spots, provided the means for whole-population screening to detect phenylketonuria in the USA. In the following decades, NBS became firmly established as a part of public health in developed countries. Technological advances allowed for the addition of new disorders into routine programmes and thereby resulted in a paradigm shift. Today, technological advances in immunological methods, tandem mass spectrometry, PCR techniques, DNA sequencing for mutational variant analysis, ultra-high performance liquid chromatography (UPLC), iso-electric focusing, and digital microfluidics are employed in the NBS laboratory to detect more than 60 disorders. In this review, we will provide the current state of methodological advances that have been introduced into NBS. Particularly, 'second-tier' methods have significantly improved both the specificity and sensitivity of testing. We will also present how proteomic and metabolomic techniques can potentially improve screening strategies to reduce the number of false-positive results and improve the prediction of pathogenicity. Additionally, we discuss the application of complex, multiparameter statistical procedures that use large datasets and statistical algorithms to improve the predictive outcomes of tests. Future developments, utilizing genomic techniques, are also likely to play an increasingly important role, possibly combined with artificial intelligence (AI)-driven software. We will consider the balance required to harness the potential of these new advances whilst maintaining the benefits and reducing the risks for harm associated with all screening.
Collapse
Affiliation(s)
- Giancarlo la Marca
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, IRCCS Meyer Children's University Hospital, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Rachel S Carling
- Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London SE1 7EH, UK
- GKT School of Medical Education, Kings College London, London SE1 1UL, UK
| | - Stuart J Moat
- Department of Medical Biochemistry, Immunology & Toxicology, University Hospital Wales, Cardiff CF14 4XW, UK
- School of Medicine, Cardiff University, University Hospital Wales, Cardiff CF14 4XW, UK
| | - Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Avenida Arroyo de los Angeles s/n, 29011 Malaga, Spain
| | - Enzo Ranieri
- Biochemical Genetics, Genetics and Molecular Pathology, SA Pathology, Women's & Children's Hospital, Adelaide 5043, Australia
| | - James R Bonham
- Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield S10 2TH, UK
| | - Peter C J I Schielen
- International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Stichtse Vecht, The Netherlands
| |
Collapse
|
9
|
Rock MJ, Baker M, Antos N, Farrell PM. Refinement of newborn screening for cystic fibrosis with next generation sequencing. Pediatr Pulmonol 2023; 58:778-787. [PMID: 36416003 DOI: 10.1002/ppul.26253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Newborn screening for cystic fibrosis (CF) has been underway universally in the United States for more than a decade, as well in most European countries, and algorithms have been evolving throughout this period with quality improvement projects as immunoreactive trypsinogen (IRT) determinations alone have been transformed to a 2-tier strategy with DNA analyses. OBJECTIVE To apply next generation sequencing (NGS) as a screening method to expand the DNA tier and identify substantially more variants in the CF transmembrane conductance regulator (CFTR) gene to enhance sensitivity and equity while minimizing incidental findings. DESIGN Sequential evaluation and improvement plan in three phases using algorithm modifications coupled to statewide follow up and analysis of screening outcomes. RESULTS After demonstrating feasibility in the first phase, we studied an IRT/NGS algorithm that included CFTR Variants with Varying Clinical Consequences (VVCCs). This revealed a high identification of CF patients with 2-variants detected through screening, but for every CF case there were 1.4 with CF metabolic syndrome/CF screen positive, inconclusive diagnosis (CRMS/CFSPID). This led us to a third phase of improvement in which the VVCCs were eliminated except for R117H, resulting in 94% 2-variant detection of patients and 0.44:1 ratio of CRMS/CFSPID to CF. CONCLUSION NGS can be used with IRT as an effective method of identifying infants at risk for CF without an appreciable increase in detection of carriers. Its potential added value includes facilitating equity, enhancing sensitivity and detecting more CF patients with 2-variants during the screening process.
Collapse
Affiliation(s)
- Michael J Rock
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mei Baker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin school of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nicholas Antos
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Philip M Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Chien YH, Hwu WL. The modern face of newborn screening. Pediatr Neonatol 2023; 64 Suppl 1:S22-S29. [PMID: 36481189 DOI: 10.1016/j.pedneo.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) has been developed for years to identify newborns with severe but treatable conditions. Taiwan's NBS system, after the initial setup for a total coverage of newborns in 1990s, was later optimized to ensure the timely return of results in infants with abnormal results. Advancements in techniques such as Tandem mass spectrometry enable the screening into a multiplex format and increase the conditions to be screened. Furthermore, advances in therapies, such as enzyme replacement therapy, stem cell transplantation, and gene therapy, significantly expand the needs for newborn screening. Advances in genomics and biomarkers discovery improve the test accuracy with the assistance of second-tier tests, and have the potential to be the first-tier test in the future. Therefore, challenge of NBS now is the knowledge gap, including the evidence of the long-term clinical benefits in large cohorts especially in conditions with new therapies, phenotypic variations and the corresponding management of some screened diseases, and cost-effectiveness of extended NBS programs. A short-term and a long-term follow-up program should be implemented to gather those outcomes better especially in the genomic era. Ethical and psychosocial issues are also potentially encountered frequently. Essential education and better informed consent should be considered fundamental to parallel those new tests into future NBS.
Collapse
Affiliation(s)
- Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
The Importance of Neonatal Screening for Galactosemia. Nutrients 2022; 15:nu15010010. [PMID: 36615667 PMCID: PMC9823668 DOI: 10.3390/nu15010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Galactosemia is an inborn metabolic disorder caused by a deficient activity in one of the enzymes involved in the metabolism of galactose. The first description of galactosemia in newborns dates from 1908, ever since complex research has been performed on cell and animal models to gain more insights into the molecular and clinical bases of this challenging disease. In galactosemia, the newborn appears to be born in proper health, having a window of opportunity before developing major morbidities that may even be fatal following ingestion of milk that contains galactose. Galactosemia cannot be cured, but its negative consequences on health can be avoided by establishing precocious diagnosis and treatment. All the foods that contain galactose should be eliminated from the diet when there is a suspicion of galactosemia. The neonatal screening for galactosemia can urge early diagnosis and intervention, preventing complications. All galactosemia types may be detected during the screening of newborns for this disorder. The major target is, however, galactose-1-phosphate uridyltransferase (GALT) deficiency galactosemia, which is diagnosed by applying a combination of total galactose and GALT enzyme analysis as well as, in certain programs, mutation screening. Most critically, infants who exhibit symptoms suggestive of galactosemia should undergo in-depth testing for this condition even when the newborn screening shows normal results. The decision to enroll global screening for galactosemia among the specific population still faces many challenges. In this context, the present narrative review provides an updated overview of the incidence, clinical manifestations, diagnosis, therapy, and prognosis of galactosemia, questioning under the dome of these aspects related to the disease the value of its neonatal monitoring.
Collapse
|
12
|
Ni B, Qin M, Zhao J, Guo Q. A glance at transient hyperammonemia of the newborn: Pathophysiology, diagnosis, and treatment: A review. Medicine (Baltimore) 2022; 101:e31796. [PMID: 36482558 PMCID: PMC9726343 DOI: 10.1097/md.0000000000031796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyperammonemia is the excessive accumulation of ammonia in the blood, and is usually defined as a plasma level above 100 µmol/L in neonates or above 50 µmol/L in term infants, children, and adolescents. Patients with hyperammonemia usually experience life-threatening neuropsychiatric symptoms, especially newborns. It is routinely caused by inherited metabolic diseases and also by acquired disorders, such as liver failure, portosystemic shunting, gastrointestinal hemorrhage, ureterosigmoidostomy, renal tubular acidosis, hypoxic ischemic encephalopathy, infections with urea-metabolizing organisms, and some drugs. Transient hyperammonemia of the newborn (THAN) is a special type of hyperammonemia acknowledged in the field of metabolic disease as an inwell-defined or well-understood entity, which can be diagnosed only after the exclusion of genetic and acquired causes of hyperammonemia. Although the prognosis for THAN is good, timely identification and treatment are essential. Currently, THAN is underdiagnosed and much less is mentioned for early diagnosis and vigorous treatment. Herein, we present common themes that emerge from the pathogenesis, diagnosis, and management of THAN, based on current evidence. When a newborn presents with sepsis, intracranial hemorrhage, or asphyxia that cannot explain coma and seizures, doctors should always keep this disease in mind.
Collapse
Affiliation(s)
- Beibei Ni
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miao Qin
- Department of Neonatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhao
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
- * Correspondence: Qie Guo, Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong 266003, China (e-mail: )
| |
Collapse
|
13
|
Bick D, Ahmed A, Deen D, Ferlini A, Garnier N, Kasperaviciute D, Leblond M, Pichini A, Rendon A, Satija A, Tuff-Lacey A, Scott RH. Newborn Screening by Genomic Sequencing: Opportunities and Challenges. Int J Neonatal Screen 2022; 8:40. [PMID: 35892470 PMCID: PMC9326745 DOI: 10.3390/ijns8030040] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Newborn screening for treatable disorders is one of the great public health success stories of the twentieth century worldwide. This commentary examines the potential use of a new technology, next generation sequencing, in newborn screening through the lens of the Wilson and Jungner criteria. Each of the ten criteria are examined to show how they might be applied by programmes using genomic sequencing as a screening tool. While there are obvious advantages to a method that can examine all disease-causing genes in a single assay at an ever-diminishing cost, implementation of genomic sequencing at scale presents numerous challenges, some which are intrinsic to screening for rare disease and some specifically linked to genomics-led screening. In addition to questions specific to routine screening considerations, the ethical, communication, data management, legal, and social implications of genomic screening programmes require consideration.
Collapse
Affiliation(s)
- David Bick
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Arzoo Ahmed
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Dasha Deen
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | | | - Dalia Kasperaviciute
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Mathilde Leblond
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Amanda Pichini
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Augusto Rendon
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Aditi Satija
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Alice Tuff-Lacey
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| | - Richard H. Scott
- Genomics England Ltd., Dawson Hall, Charterhouse Square, Barbican, London EC1M 6BQ, UK; (A.A.); (D.D.); (D.K.); (M.L.); (A.P.); (A.R.); (A.S.); (A.T.-L.); (R.H.S.)
| |
Collapse
|
14
|
An Assessment of Traditional and Genomic Screening in Newborns and their Applicability for Africa. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Suhaimi SA, Zulkipli IN, Ghani H, Abdul-Hamid MRW. Applications of next generation sequencing in the screening and diagnosis of thalassemia: A mini-review. Front Pediatr 2022; 10:1015769. [PMID: 36245713 PMCID: PMC9557073 DOI: 10.3389/fped.2022.1015769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Thalassemias are a group of inherited blood disorders that affects 5-7% of the world population. Comprehensive screening strategies are essential for the management and prevention of this disorder. Today, many clinical and research laboratories have widely utilized next-generation sequencing (NGS) technologies to identify diseases, from germline and somatic disorders to infectious diseases. Yet, NGS application in thalassemia is limited and has just recently surfaced due to current demands in seeking alternative DNA screening tools that are more efficient, versatile, and cost-effective. This review aims to understand the several aspects of NGS technology, including its most current and expanding uses, advantages, and limitations, along with the issues and solutions related to its integration into routine screening and diagnosis of thalassemias. Hitherto, NGS has been a groundbreaking technology that offers tremendous improvements as a diagnostic tool for thalassemia in terms of its higher throughput, accuracy, and adaptability. The superiority of NGS in detecting rare variants, solving complex hematological problems, and providing non-invasive alternatives to neonatal diagnosis cannot be overlooked. However, several pitfalls still preclude its use as a stand-alone technique over conventional methods.
Collapse
Affiliation(s)
| | | | - Hazim Ghani
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | | |
Collapse
|