1
|
Pellicer-Valero ÓJ, Massaro GA, Casanova AG, Paniagua-Sancho M, Fuentes-Calvo I, Harvat M, Martín-Guerrero JD, Martínez-Salgado C, López-Hernández FJ. Neural Network-Based Calculator for Rat Glomerular Filtration Rate. Biomedicines 2022; 10:biomedicines10030610. [PMID: 35327412 PMCID: PMC8945373 DOI: 10.3390/biomedicines10030610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Glomerular filtration is a pivotal process of renal physiology, and its alterations are a central pathological event in acute kidney injury and chronic kidney disease. Creatinine clearance (ClCr), a standard method for glomerular filtration rate (GFR) measurement, requires a long and tedious procedure of timed (usually 24 h) urine collection. We have developed a neural network (NN)-based calculator of rat ClCr from plasma creatinine (pCr) and body weight. For this purpose, matched pCr, weight, and ClCr trios from our historical records on male Wistar rats were used. When evaluated on the training (1165 trios), validation (389), and test sets (660), the model committed an average prediction error of 0.196, 0.178, and 0.203 mL/min and had a correlation coefficient of 0.863, 0.902, and 0.856, respectively. More importantly, for all datasets, the NN seemed especially effective at comparing ClCr among groups within individual experiments, providing results that were often more congruent than those measured experimentally. ACLARA, a friendly interface for this calculator, has been made publicly available to ease and expedite experimental procedures and to enhance animal welfare in alignment with the 3Rs principles by avoiding unnecessary stressing metabolic caging for individual urine collection.
Collapse
Affiliation(s)
- Óscar J. Pellicer-Valero
- Intelligent Data Analysis Laboratory (IDAL), Department Electronic Engineering, School of Engineering (ETSE-UV), Universitat de València, 46100 Valencia, Spain; (Ó.J.P.-V.); (M.H.); (J.D.M.-G.)
| | - Giampiero A. Massaro
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain; (G.A.M.); (A.G.C.); (M.P.-S.); (I.F.-C.); (C.M.-S.)
- Departmento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, 42002 Soria, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alfredo G. Casanova
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain; (G.A.M.); (A.G.C.); (M.P.-S.); (I.F.-C.); (C.M.-S.)
- Departmento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, 42002 Soria, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Paniagua-Sancho
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain; (G.A.M.); (A.G.C.); (M.P.-S.); (I.F.-C.); (C.M.-S.)
- Departmento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, 42002 Soria, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Fuentes-Calvo
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain; (G.A.M.); (A.G.C.); (M.P.-S.); (I.F.-C.); (C.M.-S.)
- Departmento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mykola Harvat
- Intelligent Data Analysis Laboratory (IDAL), Department Electronic Engineering, School of Engineering (ETSE-UV), Universitat de València, 46100 Valencia, Spain; (Ó.J.P.-V.); (M.H.); (J.D.M.-G.)
| | - José D. Martín-Guerrero
- Intelligent Data Analysis Laboratory (IDAL), Department Electronic Engineering, School of Engineering (ETSE-UV), Universitat de València, 46100 Valencia, Spain; (Ó.J.P.-V.); (M.H.); (J.D.M.-G.)
- Disease and Theranostic Modelling Consortium (DisMOD), 37007 Salamanca, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain; (G.A.M.); (A.G.C.); (M.P.-S.); (I.F.-C.); (C.M.-S.)
- Departmento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Disease and Theranostic Modelling Consortium (DisMOD), 37007 Salamanca, Spain
| | - Francisco J. López-Hernández
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain; (G.A.M.); (A.G.C.); (M.P.-S.); (I.F.-C.); (C.M.-S.)
- Departmento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, 42002 Soria, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Disease and Theranostic Modelling Consortium (DisMOD), 37007 Salamanca, Spain
- Group of Biomedical Research on Critical Care (BioCritic), 47003 Valladolid, Spain
- Correspondence:
| |
Collapse
|
2
|
Multiple Comparison Procedures for the Differences of Proportion Parameters in Over-Reported Multiple-Sample Binomial Data. STATS 2020. [DOI: 10.3390/stats3010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In sequential tests, typically a (pairwise) multiple comparison procedure (MCP) is performed after an omnibus test (an overall equality test). In general, when an omnibus test (e.g., overall equality of multiple proportions test) is rejected, then we further conduct a (pairwise) multiple comparisons or MCPs to determine which (e.g., proportions) pairs the significant differences came from. In this article, via likelihood-based approaches, we acquire three confidence intervals (CIs) for comparing each pairwise proportion difference in the presence of over-reported binomial data. Our closed-form algorithm is easy to implement. As a result, for multiple-sample proportions differences, we can easily apply MCP adjustment methods (e.g., Bonferroni, Šidák, and Dunn) to address the multiplicity issue, unlike previous literatures. We illustrate our procedures to a real data example.
Collapse
|