1
|
Dong J, Huang L, Shi L, Yang J, Wan Y, Shao D. Metalo Hydrogen-Bonded Organic Frameworks Constructed by Coordinated Chains for Magnetic and Proton-Conductive Bifunctionality. Inorg Chem 2024. [PMID: 39229693 DOI: 10.1021/acs.inorgchem.4c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Metalo hydrogen-bonded organic frameworks (MHOFs) have received growing interest in designing crystalline functional materials. However, reports on bifunctional MHOFs showing magnetic and proton-conductive properties are extremely limited and their design is challenging. Herein, we investigated the magnetic and proton-conductive properties of two sulfonated CoHOF and MnHOF, {M(H2O)2(abs)2}n (M = Co2+ and Mn2+, Habs = 4-aminoazobenzene-4'-sulfonic anion), constructed by coordination chains. The supramolecular frameworks sustained by H bonds between -SO3- and coordinated water show directional ladder-type H bonds with hydrophilic nanochannels, leading to high proton conduction with exceptionally high conductivity around 10-2 S cm-1 at 100 °C under 97% relative humidity. In particular, the maximum σ value of CoHOF, 2.11 × 10-2 S cm-1, recorded the highest value among the reported proton-conducting materials showing slow magnetic relaxation. Meanwhile, the molecular structure of organosulfonate enables the magnetic isolation of high-spin Co2+ and Mn2+ centers in the frameworks. Magnetic measurements indicated that the MHOFs show field-induced single-ion magnet (SIM) properties, making these compounds rare magnetic-proton-conductive MHOFs. The work provides not only two unique MHOFs with SIM behavior and high proton conduction performance but also avenues for designing stable bifunctional MHOFs via a coordination chain approach.
Collapse
Affiliation(s)
- Jing Dong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Long Huang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Le Shi
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi Wan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
2
|
Wu DQ, Kumari K, Wan Y, Gao X, Guo M, Liu G, Shao D, Zhai B, Singh SK. Binuclear cobalt(II) and two-dimensional manganese(II) coordination compounds self-assembled by mixed bipyridine-tetracarboxylic ligands with single-ion magnet properties. Dalton Trans 2023; 52:16197-16205. [PMID: 37873572 DOI: 10.1039/d3dt03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A cobalt(II) complex and manganese(II) coordination polymer, formulated as [Co2(H2btca)(mbpy)4][H2btca]·4H2O (1) and {Mn2(btca)(mbpy)2(H2O)2}n (2) (H4btca = 1,2,4,5-benzenetetracarboxylic acid; mbpy = 4,4'-dimethyl-2,2'-bipyridyl), constructed by mixed bipyridine-tetracarboxylic ligands were synthesized and characterized. Single-crystal structural analyses reveal that compound 1 is a discrete neutral binuclear molecule, while compound 2 is a two-dimensional (2D) coordination polymer. The metal ions in these compounds are well isolated, with an intramolecular Co2+⋯Co2+ distance of 9.170 Å for 1 and Mn2+⋯Mn2+ separation of 10.984 and 11.164 Å for 2 due to the bulk tetracarboxylic linker. This isolation gives rise to a single-ion magnetism origin of the compounds. Magnetic studies reveal a large zero-field splitting parameter D of 82.6 cm-1 for 1, while a very small D of 0.42 cm-1 was observed for 2. Interestingly, dynamic ac magnetic measurements exhibited slow magnetic relaxation under the external dc field of the two compounds, revealing the field-supported single-ion magnet (SIM) of 1 and 2. The detailed theoretical calculations were further applied to understand the electronic structures, magnetic anisotropy, and relaxation dynamics in 1 and 2. Combined with our recently reported compound (Eur. J. Inorg. Chem., 2022, e202200354), the foregoing results provide not only a rare binuclear cobalt(II) SIM and the first 2D manganese(II) SIM coordination polymer but also a bipyridine-tetracarboxylic ligand approach toward novel SIMs.
Collapse
Affiliation(s)
- Dong-Qing Wu
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Yi Wan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xueling Gao
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Mengxi Guo
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Bin Zhai
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| |
Collapse
|
3
|
Zhou Y, Moorthy S, Wei XQ, Singh SK, Tian Z, Shao D. A porous cobalt(II)-organic framework exhibiting high room temperature proton conductivity and field-induced slow magnetic relaxation. Dalton Trans 2023; 52:909-918. [PMID: 36594631 DOI: 10.1039/d2dt03383f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A two-dimensional (2D) cobalt(II) metal-organic framework (MOF) constructed by a ditopic organic ligand, formulated as {[Co(Hbic)(H2O)]·4H2O}n (1) (H2bic = 1H-benzimidazole-5-carboxylic acid), was hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction shows that the distorted octahedral Co2+ ions, as coordination nodes, are bridged to form 2D honeycomb networks, which are further organized into a 3D supramolecular porous framework through multiple hydrogen bonds and interlayer π-π interactions. Dynamic crystallography experiments reveal the anisotropic thermal expansion behavior of the lattice, suggesting a flexible hydrogen-bonded 3D framework. Interestingly, hydrogen-bonded (H2O)4 tetramers were found to be located in porous channels, yielding 1D proton transport pathways. As a result, the compound exhibited a high room-temperature proton conductivity of 1.6 × 10-4 S cm-1 under a relative humidity of 95% through a Grotthuss mechanism. Magnetic investigations combined with theoretical calculations reveal giant easy-plane magnetic anisotropy of the distorted octahedral Co2+ ions with the experimental and computed D values being 87.1 and 109.3 cm-1, respectively. In addition, the compound exhibits field-induced slow magnetic relaxation behavior at low temperatures with an effective energy barrier of Ueff = 45.2 cm-1. Thus, the observed electrical and magnetic properties indicate a rare proton conducting SIM-MOF. The foregoing results provide a unique bifunctional cobalt(II) framework material and suggest a promising way to achieve magnetic and electrical properties using a supramolecular framework platform.
Collapse
Affiliation(s)
- Yue Zhou
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Xiao-Qin Wei
- Department of Material Science and Engineering, Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong University, Jinzhong, 030619, P. R. China
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Tang WJ, Wu ST, Bu XM, Zhang HY, Wei XQ, Shao D. Field-induced single-ion magnet behavior in a cobalt(II) coordination polymer constructed by a mixed bipyridyl-tetracarboxylate strategy. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ferreira PS, Malta JF, Bandeira NAG, Allgaier A, van Slageren J, Paixão JA, Almeida M, Pereira LCJ, Gomes PT. Enhancing SIM behaviour in a mononuclear tetrahedral [Co( N, N'-2-iminopyrrolyl) 2] complex. Chem Commun (Camb) 2022; 58:9682-9685. [PMID: 35950347 DOI: 10.1039/d2cc03511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new homoleptic Co(II) complex bearing two highly sterically congested 2-formiminopyrrolyl N,N'-chelating ligands is reported, displaying slow relaxation of the magnetisation at zero static (DC) field. This compound shows a large value for the zero-field splitting (ZFS) parameter D of -42.6(4) cm-1 leading to a spin-reversal energy barrier Ueff of 85 cm-1.
Collapse
Affiliation(s)
- Patrícia S Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal. .,Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal.
| | - José F Malta
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal. .,CFisUC - Centro de Física da Universidade de Coimbra, Departamento de Física, Universidade de Coimbra, 3004-516, Coimbra, Portugal
| | - Nuno A G Bandeira
- BioISI - Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016, Lisboa, Portugal.
| | - Alexander Allgaier
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, D-70569, Germany.
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, D-70569, Germany.
| | - José A Paixão
- CFisUC - Centro de Física da Universidade de Coimbra, Departamento de Física, Universidade de Coimbra, 3004-516, Coimbra, Portugal
| | - Manuel Almeida
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal.
| | - Laura C J Pereira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal.
| | - Pedro T Gomes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| |
Collapse
|
6
|
Field-Induced Single Molecule Magnetic Behavior of Mononuclear Cobalt(II) Schiff Base Complex Derived from 5-Bromo Vanillin. INORGANICS 2022. [DOI: 10.3390/inorganics10080105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A mononuclear Co(II) complex of a Schiff base ligand derived from 5-Bromo-vanillin and 4-aminoantipyrine, that has a compressed tetragonal bipyramidal geometry and exhibiting field-induced slow magnetic relaxation, has been synthesized and characterized by single crystal X-ray diffraction, elemental analysis and molecular spectroscopy. In the crystal packing, a hydrogen-bonded dimer structural topology has been observed with two distinct metal centers having slightly different bond parameters. The complex has been further investigated for its magnetic nature on a SQUID magnetometer. The DC magnetic data confirm that the complex behaves as a typical S = 3/2 spin system with a sizable axial zero-field splitting parameter D/hc = 38 cm−1. The AC susceptibility data reveal that the relaxation time for the single-mode relaxation process is τ = 0.16(1) ms at T = 2.0 K and BDC = 0.12 T.
Collapse
|
7
|
Shao D, Moorthy S, Peng P, Tang WJ, Shi L, Wang ZJ, Wei XQ, Singh SK. A Single‐Ion Magnet Tape with Five‐Coordinate Cobalt(II) Centers. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Shao
- Huanggang Normal University chemistry Xianggang Road 147 438000 Huanggang CHINA
| | - Shruti Moorthy
- Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Peng Peng
- Huanggang Normal University Chemistry CHINA
| | | | - Le Shi
- Jagiellonian University in Krakow: Uniwersytet Jagiellonski w Krakowie Chemistry POLAND
| | | | | | | |
Collapse
|
8
|
Shao D, She SY, Shen LF, Yang X, Tian Z. Field-induced single-ion magnet behavior in a hydrogen-bonded supramolecular cobalt(II) complex. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Tian Z, Moorthy S, Xiang H, Peng P, You M, Zhang Q, Yang SY, Zhang YL, Wu D, Singh SKK, Shao D. Tuning chain topologies and magnetic anisotropy in one-dimensional cobalt(II) coordination polymers via distinct dicarboxylates. CrystEngComm 2022. [DOI: 10.1039/d2ce00437b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a terpyridine derivative and two different dicarboxylate ligands, two new cobalt(II) coordination polymers, namely [Co(pytpy)(DClbdc)]n (1) and [Co(pytpy)(ndc)]n (2) (pytpy = 4'-(4-Pyridyl)-2,2':6',2''-terpyridine, H2DClbc = 2,5-Dichloroterephthalic acid, and H2ndc...
Collapse
|
10
|
Shao D, Moorthy S, Yang X, Yang J, Shi L, Singh SK, Tian Z. Tuning the structure and magnetic properties via distinct pyridine derivatives in cobalt(II) coordination polymers. Dalton Trans 2021; 51:695-704. [PMID: 34913942 DOI: 10.1039/d1dt03489h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precise modulation of the structure and magnetic properties of coordination compounds is of great importance in the development of framework magnetic materials. Herein, we report that the coordination self-assembly of a neutral cobalt(II) magnetic building block and selective pyridine derivatives as organic linkers has led to two distinct cobalt(II) coordination polymers, {Co(DClQ)2(bpy)}n (1) and {Co2(DClQ)4(tpb)}n (2) (DClQ = (5,7-dichloro-8-hydroxyquinoline; bpy = 4, 4'-dipyridine; tpb = 1,2,4,5-tetra(4-pyridyl)benzene)). Structural analyses revealed that 1 and 2 are one-dimensional (1D) and 2D coordination polymers containing the same neutral magnetic building block [Co(DClQ)2] bridged by bitopic bpy and tetratopic tpb ligands, respectively. Both the complexes have a distorted octahedral CoN4O2 coordination geometry around each cobalt center offered by the bidentate ligand and organic linkers. Magnetic studies reveal large easy-plane and easy-axis magnetic anisotropy for 1 and 2, respectively. However, because of the weak antiferromagnetic coupling between the bpy-bridged CoII centers, no slow relaxation of the magnetization was observed in 1 under both zero or applied dc fields. Interestingly, complex 2 exhibits slow magnetic relaxation under external fields, indicative of a framework single-ion magnet of 2. Theoretical calculations further support the experimental results and unveil that the D values are +65.3 and -91.2 cm-1 for 1 and 2, respectively, while the magnetic exchange interaction was precisely estimated as -0.16 (1) and -0.009 (2) cm-1. The foregoing results show that the structural dimensionality and magnetic properties can be rationally modified via pre-designed magnetic building blocks and a suitable choice of organic bridging ligands.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Le Shi
- Faculty of Chemistry, Jagiellonian University, 30387 Kraków, Poland
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| |
Collapse
|
11
|
Kharwar AK, Mondal A, Sarkar A, Rajaraman G, Konar S. Modulation of Magnetic Anisotropy and Exchange Interaction in Phenoxide-Bridged Dinuclear Co(II) Complexes. Inorg Chem 2021; 60:11948-11956. [PMID: 34314144 DOI: 10.1021/acs.inorgchem.1c00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new class of four dimeric Co(II) complexes [Co2(bbpen)(X)2] (H2bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine) [X- = SCN (1), Cl (2), Br (3), and I (4)] with different coordination geometry of two Co(II) centers (trigonal-prismatic and pseudo-tetrahedral) and their magnetic study. Interestingly, the two Co(II) centers show two different types of magnetic anisotropy. State of the art ab initio CASSCF analysis reveals that the six-coordinate or the trigonal-prismatic Co(II) center possesses a consistently large negative axial zero-field splitting (negative D) parameter (∼-60 cm-1), while the four-coordinate or the pseudo-tetrahedral Co(II) center exhibits a range of D values from +13 to -23 cm-1. Ab initio calculations employing the lines model were used to estimate the magnetic exchange as both the Co(II) centers possess significant magnetic anisotropy. All the complexes display rare ferromagnetic interaction, and the strength of this interaction decreases as the ligand field on the pseudo-tetrahedral Co(II) center decreases from SCN- > Cl- > Br- > I-.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
12
|
Soliman SM, Massoud RA, Al-Rasheed HH, El-Faham A. Syntheses and Structural Investigations of Penta-Coordinated Co(II) Complexes with Bis-Pyrazolo- S-Triazine Pincer Ligands, and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2021; 26:molecules26123633. [PMID: 34198604 PMCID: PMC8232275 DOI: 10.3390/molecules26123633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023] Open
Abstract
Two penta-coordinated [Co(MorphBPT)Cl2]; 1 and [Co(PipBPT)Cl2]; 2 complexes with the bis-pyrazolyl-s-triazine pincer ligands MorphBPT and PipBPT were synthesized and characterized. Both MorphBPT and PipBPT act as NNN-tridentate pincer chelates coordinating the Co(II) center with one short Co-N(s-triazine) and two longer Co-N(pyrazole) bonds. The coordination number of Co(II) is five in both complexes, and the geometry around Co(II) ion is a distorted square pyramidal in 1, while 2 shows more distortion. In both complexes, the packing is dominated by Cl…H, C-H…π, and Cl…C (anion-π stacking) interactions in addition to O…H interactions, which are found only in 1. The UV-Vis spectral band at 564 nm was assigned to metal–ligand charge transfer transitions based on TD-DFT calculations. Complexes 1 and 2 showed higher antimicrobial activity compared to the respective free ligand MorphBPT and PipBPT, which were not active. MIC values indicated that 2 had better activity against S. aureus, B. subtilis, and P. vulgaris than 1. DPPH free radical scavenging assay revealed that all the studied compounds showed weak to moderate antioxidant activity where the nature of the substituent at the s-triazine core has a significant impact on the antioxidant activity.
Collapse
Affiliation(s)
- Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
- Correspondence: (S.M.S.); (A.E.-F.); Tel.: +20-111-1361-059 (S.M.S.); +966-114-673-195 (A.E.-F.)
| | - Raghdaa A. Massoud
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
| | - Hessa H. Al-Rasheed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence: (S.M.S.); (A.E.-F.); Tel.: +20-111-1361-059 (S.M.S.); +966-114-673-195 (A.E.-F.)
| |
Collapse
|
13
|
Yu MH, Liu XT, Space B, Chang Z, Bu XH. Metal-organic materials with triazine-based ligands: From structures to properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
X-ray Structure and Magnetic Properties of Heterobimetallic Chains Based on the Use of an Octacyanidodicobalt(III) Complex as Metalloligand. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The assembly of [Co2III(μ-2,5-dpp)(CN)8]2− anions and [MII(CH3OH)2(DMSO)2]2+ cations resulted into the formation of two heterobimetallic 1D coordination polymers of formula [MII(CH3OH)2(DMSO)2(μ-NC)2Co2III(μ-2,5-dpp)(CN)6]n·4nCH3OH [M = CoII (1)/FeII (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine. The [Co2III(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the paramagnetic [MII(CH3OH)2(DMSO)2]2+ complex cations, in a bis-monodentate fashion, to give rise to neutral heterobimetallic chains. Cryomagnetic dc (1.9–300 K) and ac (2.0–13 K) magnetic measurements for 1 and 2 show the presence of Co(II)HS (1) and Fe(II)HS (2) ions (HS – high-spin), respectively, with D values of +53.7(5) (1) and −5.1(3) cm−1 (2) and slow magnetic relaxation for 1, this compound being a new example of SIM with transversal magnetic anisotropy. Low-temperature Q-band EPR study of 1 confirms that D value is positive, which reveals the occurrence of a strong asymmetry in the g-tensors and allows a rough estimation of the E/D ratio, whereas 2 is EPR silent. Theoretical calculations by CASSCF/NEVPT2 on 1 and 2 support the results from magnetometry and EPR. The analysis of the ac magnetic measurements of 1 shows that the relaxation of M takes place in the ground state under external magnetic dc fields through dominant Raman and direct spin-phonon processes.
Collapse
|
15
|
Kupko N, Meehan KL, Witkos FE, Hutcheson H, Monroe JC, Landee CP, Dickie DA, Turnbull MM, Xiao F. Cobalt halide complexes of 2-, 3- and 4-methoxyaniline: Syntheses, structures and magnetic behavior. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Soliman SM, Elsilk SE, El-Faham A. Syntheses, structure, Hirshfeld analysis and antimicrobial activity of four new Co(II) complexes with s-triazine-based pincer ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Chahine AY, Phonsri W, Murray KS, Turner DR, Batten SR. Coordination polymers of a bis-isophthalate bridging ligand with single molecule magnet behaviour of the Co II analogue. Dalton Trans 2020; 49:5241-5249. [PMID: 32239022 DOI: 10.1039/c9dt04606b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A linear diamine-bisisophthalate bridging linker N,N'-bis(1,3-dicarboxyphenyl-5-methylene)-1,3-dimethylpropanediamine, designed to incorporate amine/ammonium functionalities in the core of the ligand, has been isolated as the pentahydrate of its dihydrochloride salt (H6L)Cl2·5H2O. Using this compound, four new coordination polymers have been formed, namely poly-[M(H2L)]·4.5H2O (1M, where M = Co, Zn, Cd) and poly-[Cd(H2L)(OH2)]·DMF·7H2O (2). Compounds 1M are isostructural 2D coordination polymers that contain 1D channels occupied by water molecules. In the case of 1Co these form a well ordered hydrogen-bonding network as determined by single crystal X-ray studies. Compound 2, synthesised under similar conditions, is a 1D coordination polymer in which the metal is partially solvated. DC and AC magnetic studies of 1Co, which posseses a mononuclear cobalt(ii) node, revealed single molecule magnet behaviour (SMM) with an effective barrier height Ueff of 37.7 K and τ0 = 1.02 × 10-9 s, among the highest reported for CoII coordination polymers.
Collapse
Affiliation(s)
- Ali Y Chahine
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Wasinee Phonsri
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Keith S Murray
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - David R Turner
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Stuart R Batten
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
18
|
Wei XQ, Shao D, Xue CL, Qu XY, Chai J, Li JQ, Du YE, Chen YQ. Field-induced slow magnetic relaxation in two interpenetrated cobalt( ii) metal–organic framework isomers. CrystEngComm 2020. [DOI: 10.1039/d0ce00979b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two interpenetrated cobalt(ii) metal–organic framework (MOF) isomers were successfully synthesized and magnetically characterized. These compounds are the first example of MOF isomers showing field-induced single-ion magnet behavior.
Collapse
Affiliation(s)
- Xiao-Qin Wei
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Cai-Long Xue
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Xing-Yu Qu
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Jie Chai
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Jian-Qing Li
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Yi-En Du
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering
- Jinzhong University
- Jinzhong
- China
| |
Collapse
|
19
|
Kong JJ, Shao D, Zhang JC, Jiang YX, Ji CL, Huang XC. From mononuclear to two-dimensional cobalt(ii) complexes based on a mixed benzimidazole–dicarboxylate strategy: syntheses, structures, and magnetic properties. CrystEngComm 2019. [DOI: 10.1039/c8ce01931b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three cobalt(ii) complexes with diverse structure dimensions based on a mixed benzimidazole–dicarboxylate strategy have been synthesized hydrothermally and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Jiao-Jiao Kong
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Dong Shao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Jia-Chen Zhang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Yu-Xuan Jiang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Cheng-Long Ji
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Xing-Cai Huang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| |
Collapse
|
20
|
Kong JJ, Jiang YX, Zhang JC, Shao D, Huang XC. Two-dimensional magnetic materials of cobalt(ii) triangular lattices constructed by a mixed benzimidazole–dicarboxylate strategy. CrystEngComm 2019. [DOI: 10.1039/c9ce00129h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, three two-dimensional magnetic materials of cobalt(ii) coordination polymers with triangular lattices were synthesized using a mixed benzimidazole–dicarboxylate strategy.
Collapse
Affiliation(s)
- Jiao-Jiao Kong
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Yu-Xuan Jiang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Jia-Chen Zhang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Dong Shao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Xing-Cai Huang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| |
Collapse
|