1
|
Gain P, Mondal S, Datta A. Pressure Induces Six-fold Coordination for the Lighter Pnictides Phosphorus and Arsenic Triiodide. Chemphyschem 2024; 25:e202400046. [PMID: 38528649 DOI: 10.1002/cphc.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
In this study, we employ an evolutionary algorithm in conjunction with first-principles density functional theory (DFT) calculations to comprehensively investigate the structural transitions, electronic properties, and chemical bonding behaviors of XI3 compounds, where X denotes phosphorus (P) and arsenic (As), across a range of elevated pressures. Our computational analyses reveal a distinctive phenomenon occurring under compression, wherein the initially trigonal structures of PI3 (P 63) and AsI3 (R-3) undergo an intriguing transformation, leading to the emergence of six-coordinated monoclinic phases (C2/m) at 6 GPa and 2 GPa for PI3 and AsI3, respectively. These high-pressure phases exhibit their stability up to 10 GPa for PI3 and 12 GPa for AsI3. Notably, the resulting structures at elevated pressures bear striking resemblance to the widely recognized six-coordinated octahedral BiI3 crystal configuration observed at ambient conditions. Our investigation further underscores the pivotal role of pressure-induced reactivity of the lone-pair electrons in PI3 and AsI3, facilitating their enhanced stereochemical reactivity and thereby enabling higher six-fold coordination. Complementary analyses employing electron localization function (ELF) and density of states (DOS) effectively delineate the progression towards augmented coordination in PI3 and AsI3 with increasing pressure. While the phenomenon of heightened coordination is conventionally associated with heavier pnictide iodides such as SbI3 and BiI3 under ambient conditions due to heightened ionic character and relativistic effects in bismuth (Bi) and antimony (Sb), our findings accentuate that analogous structural transformations can also be induced in lighter elements like phosphorus (P) and arsenic (As) under the influence of pressure.
Collapse
Affiliation(s)
- Pranab Gain
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Soumya Mondal
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Abdi G, Gryl M, Sławek A, Kowalewska E, Mazur T, Podborska A, Mech K, Zawal P, Pritam A, Kmita A, Alluhaibi L, Maximenko A, Vijayakumar C, Szaciłowski K. Influence of crystal structure and composition on optical and electronic properties of pyridinium-based bismuth iodide complexes. Dalton Trans 2023; 52:14649-14662. [PMID: 37791584 DOI: 10.1039/d3dt02910g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This study investigates the impacts of structure and composition on the optical and electronic properties of a series of pyridinium-based bismuth iodide complexes. Organic substrates with various functional groups, such as 4-aminopyridine (4-Ampy), 4-methylpyridine (4-Mepy), 4-dimethylaminopyridine (4-Dmapy), and 4-pyridinecarbonitrile (4-CNpy) with different electron-donating and electron-withdrawing groups at the para position of the pyridine ring were employed. Crystallographic analysis reveals various bismuth iodide structures, including 1D chains and discrete 0D motifs. The optical band gap of these materials, identified via diffuse reflectance spectroscopy (DRS) and verified with density functional theory (DFT) calculations, is influenced by the crystal packing and stabilising interactions. Through a comprehensive analysis, including Hirshfeld surface (HS) and void assessment, the study underscores the influence of noncovalent intermolecular interactions on crystal packing. Spectroscopic evaluations provide insights into electronic interactions, elucidating the role of electron donor and acceptor substituents within the lattice. Thermogravimetric differential thermal analysis (TG-DTA) indicates structural stability up to 250 °C. Linear sweep voltammetry (LSV) reveals significant conductivity in the range of 10-20 mS per pixel at 298.15 K. X-ray absorption spectroscopy (XAS) at the Bi L3 edge indicates a similar oxidation state and electronic environment across all samples, underscoring the role of bismuth centres surrounded by iodides.
Collapse
Affiliation(s)
- Gisya Abdi
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Marlena Gryl
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Andrzej Sławek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Ewelina Kowalewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Tomasz Mazur
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Agnieszka Podborska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Krzysztof Mech
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Piotr Zawal
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Anurag Pritam
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| | - Lulu Alluhaibi
- National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Alexey Maximenko
- National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Chakkooth Vijayakumar
- Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, India
| | - Konrad Szaciłowski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland.
| |
Collapse
|
3
|
Evarestov RA, Kuzmin A. Topological analysis of chemical bonding in the layered FePSe 3 upon pressure-induced phase transitions. J Comput Chem 2020; 41:2610-2623. [PMID: 32905632 DOI: 10.1002/jcc.26416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022]
Abstract
Two pressure-induced phase transitions have been theoretically studied in the layered iron phosphorus triselenide (FePSe3 ). Topological analysis of chemical bonding in FePSe3 has been performed based on the results of first-principles calculations within the periodic linear combination of atomic orbitals (LCAO) method with hybrid Hartree-Fock-DFT B3LYP functional. The first transition at about 6 GPa is accompanied by the symmetry change from R 3 ¯ to C2/m, whereas the semiconductor-to-metal transition (SMT) occurs at about 13 GPa leading to the symmetry change from C2/m to P 3 ¯ 1 m . We found that the collapse of the band gap at about 13 GPa occurs due to changes in the electronic structure of FePSe3 induced by relative displacements of phosphorus or selenium atoms along the c-axis direction under pressure. The results of the topological analysis of the electron density and its Laplacian demonstrate that the pressure changes not only the interatomic distances but also the bond nature between the intralayer and interlayer phosphorus atoms. The interlayer P-P interactions are absent in two non-metallic FePSe3 phases while after SMT the intralayer P-P interactions weaken and the interlayer P-P interactions appear.
Collapse
Affiliation(s)
- Robert A Evarestov
- Department of Quantum Chemistry, Saint Petersburg State University, St. Petersburg, Russian Federation
| | - Alexei Kuzmin
- Institute of Solid State Physics, University of Latvia, Riga, Latvia
| |
Collapse
|