Modder DK, Batov MS, Rajeshkumar T, Sienkiewicz A, Zivkovic I, Scopelliti R, Maron L, Mazzanti M. Assembling Diuranium Complexes in Different States of Charge with a Bridging Redox-Active Ligand.
Chem Sci 2022;
13:11294-11303. [PMID:
36320571 PMCID:
PMC9533398 DOI:
10.1039/d2sc03592h]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Radical-bridged diuranium complexes are desirable for their potential high exchange coupling and single molecule magnet (SMM) behavior, but remain rare. Here we report for the first time radical-bridged diuranium(iv) and diuranium(iii) complexes. Reaction of [U{N(SiMe3)2}3] with 2,2′-bipyrimidine (bpym) resulted in the formation of the bpym-bridged diuranium(iv) complex [{((Me3Si)2N)3UIV}2(μ-bpym2−)], 1. Reduction with 1 equiv. KC8 reduces the complex, affording [K(2.2.2-cryptand)][{((Me3Si)2N)3U}2(μ-bpym)], 2, which is best described as a radical-bridged UIII–bpym˙−–UIII complex. Further reduction of 1 with 2 equiv. KC8, affords [K(2.2.2-cryptand)]2[{((Me3Si)2N)3UIII}2(μ-bpym2−)], 3. Addition of AgBPh4 to complex 1 resulted in the oxidation of the ligand, yielding the radical-bridged complex [{((Me3Si)2N)3UIV}2(μ-bpym˙−)][BPh4], 4. X-ray crystallography, electrochemistry, susceptibility data, EPR and DFT/CASSCF calculations are in line with their assignments. In complexes 2 and 4 the presence of the radical-bridge leads to slow magnetic relaxation.
Convenient routes to dinuclear complexes of uranium where two uranium centers are bridged by the redox-active ligand bpym were identified resulting in unique and stable radical-bridged dimetallic complexes of U(iii) and U(iv) showing SMM behaviour.![]()
Collapse