1
|
Hurychová J, Dostál J, Kunc M, Šreibr S, Dostálková S, Petřivalský M, Hyršl P, Titěra D, Danihlík J, Dobeš P. Modeling seasonal immune dynamics of honey bee (Apis mellifera L.) response to injection of heat-killed Serratia marcescens. PLoS One 2024; 19:e0311415. [PMID: 39365765 PMCID: PMC11452037 DOI: 10.1371/journal.pone.0311415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The honey bee, Apis mellifera L., is one of the main pollinators worldwide. In a temperate climate, seasonality affects the life span, behavior, physiology, and immunity of honey bees. In consequence, it impacts their interaction with pathogens and parasites. In this study, we used Bayesian statistics and modeling to examine the immune response dynamics of summer and winter honey bee workers after injection with the heat-killed bacteria Serratia marcescens, an opportunistic honey bee pathogen. We investigated the humoral and cellular immune response at the transcriptional and functional levels using qPCR of selected immune genes, antimicrobial activity assay, and flow cytometric analysis of hemocyte concentration. Our data demonstrate increased antimicrobial activity at transcriptional and functional levels in summer and winter workers after injection, with a stronger immune response in winter bees. On the other hand, an increase in hemocyte concentration was observed only in the summer bee population. Our results indicate that the summer population mounts a cellular response when challenged with heat-killed S. marcescens, while winter honey bees predominantly rely on humoral immune reactions. We created a model describing the honey bee immune response dynamics to bacteria-derived components by applying Bayesian statistics to our data. This model can be employed in further research and facilitate the investigating of the honey bee immune system and its response to pathogens.
Collapse
Affiliation(s)
- Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Dostál
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sara Šreibr
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dalibor Titěra
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science Prague, Prague, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Norton AM, Buchmann G, Ashe A, Watson OT, Beekman M, Remnant EJ. Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39072811 DOI: 10.1111/imb.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Iflavirus aladeformis (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (Apis mellifera L. [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV-A and DWV-B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT-qPCR) and analysed small RNA after experimental injection with DWV-A and DWV-B. We found no evidence that DWV-A and DWV-B elicit different immune responses in honey bees. RNA interference genes were up-regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, Triatovirus nigereginacellulae (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus-derived Piwi-interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of V. destructor, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.
Collapse
Affiliation(s)
- Amanda M Norton
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Owen T Watson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Madeleine Beekman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emily J Remnant
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
4
|
Pascual G, Silva D, Vargas M, Aranda M, Cañumir JA, López MD. Dietary Supplement of Grape Wastes Enhances Honeybee Immune System and Reduces Deformed Wing Virus (DWV) Load. Antioxidants (Basel) 2022; 12:antiox12010054. [PMID: 36670916 PMCID: PMC9855144 DOI: 10.3390/antiox12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Ingredients rich in phenolic compounds and antioxidants of winemaking wastes, which play an important role in the prevention of various diseases and the control of viruses, are being explored. Currently, there is a concern about honeybee population loss, with deformed wing virus (DWV) being the most common virus infecting apiaries and one of the main causes of honeybee decline. Hence, the effect of grape pomace powder (GPP) as a dietary supplement to enhance the immune system of honeybees affected by DWV was evaluated. The characteristics of the ingredient GPP, obtained by spray-drying, revealed a high anthocyanin content (1102.45 mg 100 g-1), and it was applied at doses of 0.5, 1, 2.5 and 5% as a dietary supplement for bees infected by DWV. The results showed that the GPP treatments strengthened the immune response of honeybees against DWV. Moreover, the expression of the Relish gene was significantly higher in bees fed with GPP compared to the infected control. This study, which is framed in the search of food waste valorization for environmental sustainability, proves the feasibility of using grape wastes as dietary supplements for pollinators, and provides knowledge of the influence of polyphenols on the expression profiles of immune-related genes in honeybees.
Collapse
Affiliation(s)
- Guillermo Pascual
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - Diego Silva
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - Marisol Vargas
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - Mario Aranda
- Laboratorio de Investigación en Fármacos y Alimentos, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7810000, Chile
| | - Juan Antonio Cañumir
- Laboratorio de Bioprocesos, Departamento de Agroindustría, Facultad de Ingenería Agrícola, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - María Dolores López
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
- Correspondence:
| |
Collapse
|
5
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Stevanovic J, Cosic M, Stanimirovic Z. Contact varroacidal efficacy of lithium citrate and its influence on viral loads, immune parameters and oxidative stress of honey bees in a field experiment. Front Physiol 2022; 13:1000944. [PMID: 36171978 PMCID: PMC9510912 DOI: 10.3389/fphys.2022.1000944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
With an almost global distribution, Varroa destuctor is the leading cause of weakening and loss of honey bee colonies. New substances are constantly being tested in order to find those that will exhibit high anti-Varroa efficacy at low doses/concentrations, without unwanted effects on bees. Lithium (Li) salts stood out as candidates based on previous research. The aims of this study were to evaluate Li citrate hydrate (Li-cit) for its contact efficacy against Varroa, but also the effect of Li-cit on honey bees by estimating loads of honey bee viruses, expression levels of immune-related genes and genes for antioxidative enzymes and oxidative stress parameters on two sampling occasions, before the treatment and after the treatment. Our experiment was performed on four groups, each consisting of seven colonies. Two groups were treated with the test compound, one receiving 5 mM and the other 10 mM of Li-cit; the third received oxalic acid treatment (OA group) and served as positive control, and the fourth was negative control (C group), treated with 50% w/v pure sucrose-water syrup. Single trickling treatment was applied in all groups. Both tested concentrations of Li-cit, 5 and 10 mM, expressed high varroacidal efficacy, 96.85% and 96.80%, respectively. Load of Chronic Bee Paralysis Virus significantly decreased (p < 0.01) after the treatment in group treated with 5 mM of Li-cit. In OA group, loads of Acute Bee Paralysis Virus and Deformed Wing Virus significantly (p < 0.05) increased, and in C group, loads of all viruses significantly (p < 0.01 or p < 0.001) increased. Transcript levels of genes for abaecin, apidaecin, defensin and vitellogenin were significantly higher (p < 0.05—p < 0.001), while all oxidative stress parameters were significantly lower (p < 0.05—p < 0.001) after the treatment in both groups treated with Li-cit. All presented results along with easy application indicate benefits of topical Li-cit treatment and complete the mosaic of evidence on the advantages of this salt in the control of Varroa.
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
- *Correspondence: Jevrosima Stevanovic,
| | - Milivoje Cosic
- Institute of Forestry, Belgrade, Serbia
- Department of Animal Breeding, Faculty of Agriculture, Bijeljina University, Bijeljina, Bosnia and Herzegovina
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
El-Seedi HR, Ahmed HR, El-Wahed AAA, Saeed A, Algethami AF, Attia NF, Guo Z, Musharraf SG, Khatib A, Alsharif SM, Naggar YA, Khalifa SAM, Wang K. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Vet Sci 2022; 9:vetsci9050199. [PMID: 35622727 PMCID: PMC9146872 DOI: 10.3390/vetsci9050199] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Honeybees are the most prevalent insect pollinator species; they pollinate a wide range of crops. Colony collapse disorder (CCD), which is caused by a variety of biotic and abiotic factors, incurs high economic/ecological loss. Despite extensive research to identify and study the various ecological stressors such as microbial infections, exposure to pesticides, loss of habitat, and improper beekeeping practices that are claimed to cause these declines, the deep understanding of the observed losses of these important insects is still missing. Honeybees have an innate immune system, which includes physical barriers and cellular and humeral responses to defend against pathogens and parasites. Exposure to various stressors may affect this system and the health of individual bees and colonies. This review summarizes and discusses the composition of the honeybee immune system and the consequences of exposure to stressors, individually or in combinations, on honeybee immune competence. In addition, we discuss the relationship between bee nutrition and immunity. Nutrition and phytochemicals were highlighted as the factors with a high impact on honeybee immunity.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| | - Hanan R. Ahmed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ahmed F. Algethami
- Al nahal al jwal Foundation Saudi Arabia, P.O. Box 617, Al Jumum, Makkah 21926, Saudi Arabia;
| | - Nour F. Attia
- Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic Univetsity Malaysia, Kuantan 25200, Malaysia;
- Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155, Indonesia
| | - Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia;
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden;
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| |
Collapse
|
7
|
A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Sci Rep 2022; 12:4852. [PMID: 35393440 PMCID: PMC8989980 DOI: 10.1038/s41598-022-08643-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
The ectoparasite Varroa destructor is the greatest threat to managed honey bee (Apis mellifera) colonies globally. Despite significant efforts, novel treatments to control the mite and its vectored pathogens have shown limited efficacy, as the host remains naïve. A prospective solution lies in the development of Varroa-resistant honey bee stocks, but a paucity of rigorous selection data restricts widespread adoption. Here, we characterise the parasite and viral dynamics of a Varroa-resistant honey bee stock, designated ‘Pol-line’, using a large-scale longitudinal study. Results demonstrate markedly reduced Varroa levels in this stock, diminished titres of three major viruses (DWV-A, DWV-B, and CBPV), and a two-fold increase in survival. Levels of a fourth virus that is not associated with Varroa—BQCV—do not differ between stocks, supporting a disruption of the transmission pathway. Further, we show that when decoupled from the influence of Varroa levels, viral titres do not constitute strong independent predictors of colony mortality risk. These findings highlight the need for a reassessment of Varroa etiology, and suggest that derived stocks represent a tractable solution to the Varroa pandemic.
Collapse
|
8
|
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives-A Review. INSECTS 2021; 12:800. [PMID: 34564240 PMCID: PMC8465918 DOI: 10.3390/insects12090800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive, tenacious inside a bee colony. From all the research done on the topic, we have learned that a better understanding of this organism in its relationship with the bee but also for itself is necessary. Its biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments have been developed over the years based on hard or soft acaricides or even on biocontrol techniques. To date, no real sustainable solution exists to reduce the pressure of the mite without creating resistances or harming honeybees. Consequently, the development of alternative disruptive tools against the parasitic life cycle remains open. It requires the combination of both laboratory and field results through a holistic approach based on health biomarkers. Here, we advocate for a more integrative vision of V. destructor research, where in vitro and field studies are more systematically compared and compiled. Therefore, after a brief state-of-the-art about the mite's life cycle, we discuss what has been done and what can be done from the laboratory to the field against V. destructor through an integrative approach.
Collapse
Affiliation(s)
- Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France;
| | - Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| | | | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| |
Collapse
|
9
|
Chen G, Wang S, Jia S, Feng Y, Hu F, Chen Y, Zheng H. A New Strain of Virus Discovered in China Specific to the Parasitic Mite Varroa destructor Poses a Potential Threat to Honey Bees. Viruses 2021; 13:679. [PMID: 33920919 PMCID: PMC8071286 DOI: 10.3390/v13040679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
The ectoparasitic mite, Varroa destructor, feeds directly on honey bees and serves as a vector for transmitting viruses among them. The Varroa mite causes relatively little damage to its natural host, the Eastern honey bee (Apis cerana) but it is the most devastating pest for the Western honey bee (Apis mellifera). Using Illumina HiSeq sequencing technology, we conducted a metatranscriptome analysis of the microbial community associated with Varroa mites. This study led to the identification of a new Chinese strain of Varroa destructor virus-2 (VDV-2), which is a member of the Iflaviridae family and was previously reported to be specific to Varroa mites. A subsequent epidemiological investigation of Chinese strain of VDV-2 (VDV-2-China) showed that the virus was highly prevalent among Varroa populations and was not identified in any of the adult workers from both A. mellifera and A.cerana colonies distributed in six provinces in China, clearly indicating that VDV-2-China is predominantly a Varroa-adapted virus. While A. mellifera worker pupae exposed to less than two Varroa mites tested negative for VDV-2-China, VDV-2-China was detected in 12.5% of the A. mellifera worker pupae that were parasitized by more than 10 Varroa mites, bringing into play the possibility of a new scenario where VDV-2 could be transmitted to the honey bees during heavy Varroa infestations. Bioassay for the VDV-2-China infectivity showed that A. cerana was not a permissive host for VDV-2-China, yet A. mellifera could be a biological host that supports VDV-2-China's replication. The different replication dynamics of the virus between the two host species reflect their variation in terms of susceptibility to the virus infection, posing a potential threat to the health of the Western honey bee. The information gained from this study contributes to the knowledge concerning genetic variabilities and evolutionary dynamics of Varroa-borne viruses, thereby enhancing our understanding of underlying molecular mechanisms governing honey bee Varroosis.
Collapse
Affiliation(s)
- Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Shuo Jia
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Ye Feng
- Insitutute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| |
Collapse
|
10
|
Viruses that affect Argentinian honey bees (Apis mellifera). Arch Virol 2021; 166:1533-1545. [PMID: 33683476 DOI: 10.1007/s00705-021-05000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Beekeeping is a widespread activity in Argentina, mainly producing honey that has gained both national and international recognition. There are more than 3,000,000 hives in the country, mainly concentrated in Buenos Aires Province (approximately 1,000,000 hives). In recent decades, worrying rates of hive loss have been observed in many countries around the world. In Latin America, the estimated loss of hives is between 13% (Peru and Ecuador) and 53% (Chile). Argentina had annual losses of 34% for the period of October 1, 2016 to October 1, 2017. The causes of these losses are not clear but probably involve multiple stressors that can act simultaneously. One of the main causes of loss of bee colonies worldwide is infestation by the ectoparasitic mite Varroa destructor in combination with viral infections. To date, 10 viruses have been detected that affect honey bees (Apis mellifera) in Argentina. Of these, deformed wing virus, sacbrood virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute bee paralysis can be transmitted by mites. Deformed wing virus and the AIK complex are the viruses most often associated with loss of hives worldwide. Considering that bee viruses have been detected in Argentina in several hymenopteran and non-hymenopteran insects, these hosts could act as important natural reservoirs for viruses and play an important role in their dispersal in the environment. Further studies to investigate the different mechanisms by which viruses spread in the environment will enable us to develop various strategies for the control of infected colonies and the spread of viruses in the habitat where they are found.
Collapse
|
11
|
Daughenbaugh KF, Kahnonitch I, Carey CC, McMenamin AJ, Wiegand T, Erez T, Arkin N, Ross B, Wiedenheft B, Sadeh A, Chejanovsky N, Mandelik Y, Flenniken ML. Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1. Viruses 2021; 13:291. [PMID: 33673324 PMCID: PMC7917660 DOI: 10.3390/v13020291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Bees are important plant pollinators in agricultural and natural ecosystems. High average annual losses of honey bee (Apis mellifera) colonies in some parts of the world, and regional population declines of some mining bee species (Andrena spp.), are attributed to multiple factors including habitat loss, lack of quality forage, insecticide exposure, and pathogens, including viruses. While research has primarily focused on viruses in honey bees, many of these viruses have a broad host range. It is therefore important to apply a community level approach in studying the epidemiology of bee viruses. We utilized high-throughput sequencing to evaluate viral diversity and viral sharing in sympatric, co-foraging bees in the context of habitat type. Variants of four common viruses (i.e., black queen cell virus, deformed wing virus, Lake Sinai virus 2, and Lake Sinai virus NE) were identified in honey bee and mining bee samples, and the high degree of nucleotide identity in the virus consensus sequences obtained from both taxa indicates virus sharing. We discovered a unique bipartite + ssRNA Tombo-like virus, Andrena-associated bee virus-1 (AnBV-1). AnBV-1 infects mining bees, honey bees, and primary honey bee pupal cells maintained in culture. AnBV-1 prevalence and abundance was greater in mining bees than in honey bees. Statistical modeling that examined the roles of ecological factors, including floral diversity and abundance, indicated that AnBV-1 infection prevalence in honey bees was greater in habitats with low floral diversity and abundance, and that interspecific virus transmission is strongly modulated by the floral community in the habitat. These results suggest that land management strategies that aim to enhance floral diversity and abundance may reduce AnBV-1 spread between co-foraging bees.
Collapse
Affiliation(s)
- Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Idan Kahnonitch
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Charles C. Carey
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Alexander J. McMenamin
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Tanner Wiegand
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Tal Erez
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Naama Arkin
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Brian Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Asaf Sadeh
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Nor Chejanovsky
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Yael Mandelik
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
12
|
Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerg Top Life Sci 2020; 4:45-57. [PMID: 32537655 PMCID: PMC7326341 DOI: 10.1042/etls20190125] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Since its migration from the Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for beekeeping worldwide. Due to a short history of coevolution, the host–parasite relationship between A. mellifera and V. destructor is unbalanced, with honey bees suffering infestation effects at the individual, colony and population levels. Several control solutions have been developed to tackle the colony and production losses due to Varroa, but the burden caused by the mite in combination with other biotic and abiotic factors continues to increase, weakening the beekeeping industry. In this synthetic review, we highlight the main advances made between 2015 and 2020 on V. destructor biology and its impact on the health of the honey bee, A. mellifera. We also describe the main control solutions that are currently available to fight the mite and place a special focus on new methodological developments, which point to integrated pest management strategies for the control of Varroa in honey bee colonies.
Collapse
|
13
|
Amiri E, Herman JJ, Strand MK, Tarpy DR, Rueppell O. Egg transcriptome profile responds to maternal virus infection in honey bees, Apis mellifera. INFECTION GENETICS AND EVOLUTION 2020; 85:104558. [PMID: 32947033 DOI: 10.1016/j.meegid.2020.104558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Trans-generational disease effects include vertical pathogen transmission but also immune priming to enhance offspring immunity. Accordingly, the survival consequences of maternal virus infection can vary and its molecular consequences during early development are poorly understood. The honey bee queen is long-lived and represents the central hub for vertical virus transmission as the sole reproductive individual in her colony. Even though virus symptoms in queens are mild, viral infection may have severe consequences for the offspring. Thus, transcriptome patterns during early developmental are predicted to respond to maternal virus infection. To test this hypothesis, gene expression patterns were compared among pooled honey bee eggs laid by queens that were either infected with Deformed wing virus (DWV1), Sacbrood virus (SBV2), both viruses (DWV and SBV), or no virus. Whole transcriptome analyses revealed significant expression differences of a few genes, some of which have hitherto no known function. Despite the paucity of single gene effects, functional enrichment analyses revealed numerous biological processes in the embryos to be affected by virus infection. Effects on several regulatory pathways were consistent with maternal responses to virus infection and correlated with responses to DWV and SBV in honey bee larvae and pupae. Overall, effects on egg transcriptome patterns were specific to each virus and the results of dual-infection samples suggested synergistic effects of DWV and SBV. We interpret our results as consequences of maternal infections. Thus, this first study to document and characterize virus-associated changes in the transcriptome of honey bee eggs represents an important contribution to understanding trans-generational virus effects, although more in-depth studies are needed to understand the detailed mechanisms of how viruses affect honey bee embryos.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jacob J Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Micheline K Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, Durham, NC 27709, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
14
|
Meikle WG, Weiss M, Beren E. Landscape factors influencing honey bee colony behavior in Southern California commercial apiaries. Sci Rep 2020; 10:5013. [PMID: 32193405 PMCID: PMC7081305 DOI: 10.1038/s41598-020-61716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
Colony brood levels, frames of bees (adult bee mass) and internal hive temperature were monitored for 60 colonies for each of two years as they were moved from agricultural, tree crop and mountain landscapes in southern California to blueberry and almond pollination sites. Hive weight was also continuously monitored for 20 of those hives for 6 weeks for both years, during commercial pollination. Pesticide residues in wax, honey and beebread samples were analyzed by composite apiary samples. While colonies in mountain sites had more adult bees and brood than those in agricultural sites in August, by October brood levels were higher in colonies from agricultural sites. Though hives from different original landscapes differed in size in October, hive assessments revealed no differences between the groups after co-wintering when graded for commercial almond pollination. Beebread from hives in agricultural sites had greater agrochemical diversity and in general higher pesticide hazard quotients than those from mountain sites, but those hives also had higher and more constant temperatures from September until January than hives from mountain sites. Hives placed in commercial almond pollination gained on average 287 g per d, compared to an average loss of 68 g per d for colonies in commercial blueberry pollination, although weight data indicated greater foraging effort by colonies in blueberries, possibly due to the proximity and abundance of almond pollen during bloom. Temperature monitoring was effective at distinguishing hive groups and had the best overall value in terms of equipment, installation, colony disturbance and information yield.
Collapse
Affiliation(s)
| | - Milagra Weiss
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Eli Beren
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| |
Collapse
|
15
|
Fei D, Guo Y, Fan Q, Li M, Sun L, Ma M, Li Y. Codon optimization, expression in Escherichia coli, and immunogenicity analysis of deformed wing virus (DWV) structural protein. PeerJ 2020; 8:e8750. [PMID: 32201647 PMCID: PMC7071823 DOI: 10.7717/peerj.8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background Deformed wing virus (DWV) is a serious threat to honey bees (Apis mellifera) and is considered a major cause of elevated losses of honey bee colonies. However, lack of information on the immunogenicity of DWV structural proteins has hindered the development of effective biocontrol drugs. Methods We optimized the VP1, VP2 and VP3 codons of DWV surface capsid protein genes on the basis of an Escherichia coli codon bias, and the optimized genes of roVP1, roVP2 and roVP3 were separately expressed in E. coli and purified. Next, the three recombinant proteins of roVP1, roVP2 and roVP3 were intramuscularly injected into BALB/c and the immunogenicity was evaluated by the levels of specific IgG and cytokines. Furthermore, anti-roVP-antisera (roVP1 or roVP2 or roVP3) from the immunized mice was incubated with DWV for injecting healthy white-eyed pupae for the viral challenge test, respectively. Results The optimized genes roVP1, roVP2 and roVP3 achieved the expression in E. coli using SDS-PAGE and Western blotting. Post-immunization, roVP2 and roVP3 exhibited higher immunogenicity than roVP1 and stimulated a stronger humoral immune response in the mice, which showed that the recombinant proteins of roVP3 and roVP2 induced a specific immune response in the mice. In the challenge test, data regarding quantitative real-time RT-PCR (qRT-PCR) from challenged pupae showed that the level of virus copies in the recombinant protein groups was significantly lower than that of the virus-only group at 96 h post-inoculation (P < 0.05). Among them, the degree of neutralization using antibodies raised to the recombinant proteins are between approximately 2-fold and 4-fold and the virus copies of the roVP3 group are the lowest in the three recombinant protein groups, which indicated that specific antibodies against recombinant proteins roVP1, roVP2 and roVP3 of DWV could neutralize DWV to reduce the virus titer in the pupae. Collectively, these results demonstrated that the surface capsid protein of DWV acted as candidates for the development of therapeutic antibodies against the virus.
Collapse
Affiliation(s)
- Dongliang Fei
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Yaxi Guo
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| | - Qiong Fan
- Jinzhou Agricultural and Rural Comprehensive Service Center, Jinzhou, Liaoning, China
| | - Ming Li
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Li Sun
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Yijing Li
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| |
Collapse
|
16
|
Negri P, Villalobos E, Szawarski N, Damiani N, Gende L, Garrido M, Maggi M, Quintana S, Lamattina L, Eguaras M. Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. INSECTS 2019; 10:E401. [PMID: 31726686 PMCID: PMC6920938 DOI: 10.3390/insects10110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Ethel Villalobos
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA;
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Liesel Gende
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| |
Collapse
|
17
|
Abstract
Abstract
Colony losses, including those induced by the colony collapse disorder, are an urgent problem of contemporary apiculture which has been capturing the attention of both apiculturists and the research community. CCD is characterized by the absence of adult dead bees in the hive in which few workers and a queen remain, the ratio between the brood quantity and the number of workers is heavily disturbed in favor of the former, and more than enough food is present. Robbing behavior and pests usually attacking the weakened colony do not occur. In the present paper, the causes of the emergence of this problem are discussed, as well as the measures of its prevention.
The following factors, which lead to colony losses, are analyzed: shortage of high-quality food (pollen and honey); infestation with parasites, primarily with Varroa destructor, and mixed virus infections; bacterial infections (American and European foulbrood), fungal infections (nosemosis and ascosphaerosis) and trypanosomal infections (lotmariosis); and, finally, general management of the apiary.
Certain preventive measures are proposed: (1) providing ample high-quality forage and clean water, (2) avoiding sugarisation, i.e. superfluous use of sugar syrup, (3) meeting the nutritional needs of the colony, (4) when feeding bees, taking care of the timing and the composition of diet, avoiding pure sugar syrup which in excessive quantities may induce energetic and oxidative stress, (5) when there is a shortage of natural feed – honey in the brood chamber – use sugar syrup with natural/artificial supplements to avoid protein starvation, (6) organized control of V. destructor in the colonies is obligatory due to its vector role, and (7) compliance with hygienic and sanitary measures and principles of good apiculture practice and management in apiaries. To conclude, all preventive measures are feasible in compliance with rules and regulations concerning regular spring and autumn bee health monitoring by licensed veterinarians, who can propose adequate treatments if necessary.
Collapse
|
18
|
López-Uribe MM, Simone-Finstrom M. Special Issue: Honey Bee Research in the US: Current State and Solutions to Beekeeping Problems. INSECTS 2019; 10:E22. [PMID: 30634401 PMCID: PMC6358869 DOI: 10.3390/insects10010022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Abstract
The European honey bee (Apis mellifera) is the most important managed species for agricultural pollination across the world [...].
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA 16802, USA.
| | - Michael Simone-Finstrom
- USDA Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research, Baton Rouge, LA 70820, USA.
| |
Collapse
|