1
|
Selling GW, Hay WT, Peterson SC, Hojilla-Evangelista MP, Kenar JA, Utt KD. Structure and functionality of surface-active amylose-fatty amine salt inclusion complexes. Carbohydr Polym 2024; 338:122186. [PMID: 38763722 DOI: 10.1016/j.carbpol.2024.122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Novel value-added starch-based materials can be produced by forming amylose inclusion complexes (AIC) with hydrophobic compounds. There is currently little research on AIC use as polymeric emulsifiers, particularly for AIC with fatty amine salt ligands. This work evaluated AIC emulsifiers by studying the structure and functionality of AIC composed of high amylose corn starch and fatty amine salts (10-18 carbons, including a mixture simulating vegetable oil composition) produced via steam jet cooking. X-ray scattering verified successful AIC formation, with peaks located near 7.0°, 12.8° and 19.9° 2θ. AIC were easily dispersed in water (80-85 °C) and remained in suspension at room temperature for weeks, unlike the uncomplexed ligands or starch. AIC were highly effective emulsifying agents, with emulsifying activity indexes of 213-229 m2g-1 at pH 5, and zeta potentials, a measure of electrostatic repulsion, as high as 43.4 mV. AIC dispersions had surface tension ranging from 24 to 41 mN/m and displayed surface-active properties superior to amylose complexes formed from fatty acid salts and competitive with common starch-based emulsifiers. These findings demonstrate that fatty amine salt AIC are effective emulsifiers that can be made from low-cost sources of fatty amine salts, such as vegetable oil derivatives.
Collapse
Affiliation(s)
- Gordon W Selling
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - William T Hay
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University, Peoria, IL 61604, United States of America.
| | - Steven C Peterson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - Milagros P Hojilla-Evangelista
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - James A Kenar
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| | - Kelly D Utt
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research Unit, 1815 N University, Peoria, IL 61604, United States of America
| |
Collapse
|
2
|
Nhouchi Z, Watuzola R, Pense-Lheritier AM. A review on octenyl succinic anhydride modified starch-based Pickering-emulsion: Instabilities and ingredients interactions. J Texture Stud 2022; 53:581-600. [PMID: 35119704 DOI: 10.1111/jtxs.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
Abstract
Pickering emulsions endow attractive features and a wide versatility in both food and nonfood fields. In the last decades, a noticeable interest has emerged toward the use of octenyl succinic anhydride (OSA)-starch to improve the long-term stability in such systems. In this review, instabilities were pointed out, where a new kinetic equilibrium was observed in Pickering emulsions assigned to migration and size variations of particles. These features were monitored using rheological measurements to understand microstructure and droplets mobility. The elastic modulus (G'), the viscous modulus (G″), and tan(δ) values were attributed to the transition from solid to fluid and assigned to the instability of the formulation regardless of the type of the system configuration. The novelties in using OSA-modified starch, were also exposed. The chemical modification of starch decreased creaming for months. Interaction between OSA-modified starches and some ionic components (potassium, magnesium, and calcium) as well as hydrocolloids and proteins reduced creaming and coalescence due to dense interfacial film. Furthermore, the key parameters (oil fraction, fatty acids composition, oxidative stress oil polarity, and oil viscosity) that govern oil phase in Pickering emulsion, were analyzed. These parameters were found to be positively correlated to the stability of Pickering emulsions.
Collapse
Affiliation(s)
- Zeineb Nhouchi
- School of Industrial Biology - EBI, EBInnov, Cergy, France
| | | | | |
Collapse
|
3
|
Densovirus Oil Suspension Significantly Improves the Efficacy and Duration of Larvicidal Activity against Aedes albopictus. Viruses 2022; 14:v14030475. [PMID: 35336882 PMCID: PMC8954509 DOI: 10.3390/v14030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Aedes albopictus is the sole vector for various mosquito-borne viruses, including dengue, chikungunya, and Zika. Ecofriendly biological agents are required to reduce the spread of these mosquito-borne infections. Mosquito densoviruses (MDVs) are entomopathogenic mosquito-specific viruses, which can reduce the capacity of isolated vectors and decrease mosquito-borne viral disease transmission. However, their variable pathogenicity restricts their commercial use. In the present study, we developed a series of novel larvicide oil suspensions (denoted Bacillus thuringiensis (Bti) oil, Ae. albopictus densovirus (AalDV-5) oil, and a mixture of AalDV-5+Bti oil), which were tested against Ae. albopictus larvae under experimental semi-field and open-field conditions. The effect of AalDV-5 on non-target species was also evaluated. The combined effect of AalDV-5+Bti was greater than that of individual toxins and was longer lasting and more persistent compared with the laboratory AalDV-5 virus strain. The virus was quantified on a weekly basis by quantitative polymerase chain reaction (qPCR) and was persistently detected in rearing water as well as in dead larvae. Wildtype densovirus is not pathogenic to non-target organisms. The present findings confirm the improved effect of a mixed microbial suspension (AalDV-5+Bti oil) larvicide against Ae. albopictus. The development and testing of these products will enable better control of the vector mosquitoes.
Collapse
|
4
|
Muturi EJ, Hay WT, Doll KM, Ramirez JL, Selling G. Insecticidal Activity of Commiphora erythraea Essential Oil and Its Emulsions Against Larvae of Three Mosquito Species. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1835-1842. [PMID: 32474606 DOI: 10.1093/jme/tjaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The use of essential oils as ecofriendly tools for vector management is one of the mainstreams for biopesticide research. We evaluated the larvicidal properties of Commiphora erythraea (opoponax) essential oil and its fractions against Culex restuans Theobald, Culex pipiens L., and Aedes aegypti L. The use of bio-based amylose-N-1-hexadecylammonium chloride inclusion complex (Hex-Am) and amylose-sodium palmitate inclusion complex (Na-Palm) as emulsifiers for C. erythraea essential oil was also investigated. Bisabolene was the most abundant chemical constituent in the whole essential oil (33.9%), fraction 2 (62.5%), and fraction 4 (23.8%) while curzerene (32.6%) and α-santalene (30.1%) were the dominant chemical constituents in fractions 1 and 3, respectively. LC50 values for the whole essential oil were 19.05 ppm for Cx. restuans, 22.61 ppm for Cx. pipiens, and 29.83 ppm for Ae. aegypti and differed significantly. None of the four C. erythraea essential oil fractions were active against mosquito larvae. Two CYP450 genes (CYP6M11 and CYP6N12) and one GST gene (GST-2) were significantly upregulated in Ae. aegypti larvae exposed to C. erythraea essential oil suggesting their potential involvement in metabolic pathways for C. erythraea essential oil. Essential oil emulsions produced with Hex-Am were more toxic than the whole essential oil while those produced with Na-Palm had similar toxicity as the whole essential oil. These findings demonstrate that C. erythraea essential oil is a promising source of mosquito larvicide and that the use of Hex-Am as an emulsifier can enhance the insecticidal properties of C. erythraea essential oil.
Collapse
Affiliation(s)
- Ephantus J Muturi
- USDA, Agricultural Research Service, NCAUR, Crop Bioprotection Research Unit, Peoria, IL
| | - William T Hay
- USDA, Agricultural Research Service, NCAUR, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL
| | - Kenneth M Doll
- USDA, Agricultural Research Service, NCAUR, Bio-Oils Research Unit, Peoria, IL
| | - Jose L Ramirez
- USDA, Agricultural Research Service, NCAUR, Crop Bioprotection Research Unit, Peoria, IL
| | - Gordon Selling
- USDA, Agricultural Research Service, NCAUR, Plant Polymer Research Unit, Peoria, IL
| |
Collapse
|
5
|
Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier. PLoS One 2020; 15:e0229076. [PMID: 32078653 PMCID: PMC7032722 DOI: 10.1371/journal.pone.0229076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022] Open
Abstract
Synthetic pesticides are the cornerstone of vector-borne disease control, but alternatives are urgently needed to tackle the growing problem of insecticide resistance and concerns over environmental safety. Leptospermum scoparium J.R. Forst and G. Forst (manuka) essential oil and its four fractions were analyzed for chemical composition and toxicity against Aedes aegypti larvae. The use of bio-based amylose-N-1-hexadecylammonium chloride inclusion complexes (Hex-Am) as an emulsifier for L. scoparium essential oil was also investigated. Fraction 1 was inactive, fractions 2 (LC50 = 12.24 ppm) and 3 (LC50 = 20.58 ppm) were more toxic than the whole essential oil (LC50 = 47.97 ppm), and fraction 4 (LC50 = 35.87 ppm) had similar toxicity as the whole essential oil. Twenty-one chemical constituents were detected in L. scoparium essential oil compared to 16, 5, 19 and 25 chemical constituents in fractions, 1, 2, 3 and 4 respectively. The two most dominant chemical constituents were calamenene (17.78%) and leptospermone (11.86%) for L. scoparium essential oil, calamenene (37.73%) and ledene (10.37%) for fraction 1, leptospermone (56.6%) and isoleptospermone (19.73) for fraction 2, cubenol (24.30%) and caryophyllene oxide (12.38%) for fraction 3, and γ-gurjunene (21.62%) and isoleptospermone (7.88%) for fraction 4. Alpha-pinene, ledene, and aromandendrene were 2–7 times less toxic than the whole essential suggesting that the toxicity of L. scoparium essential oil was either due to other chemical constituents that were not tested or due synergist interactions among chemical constituents. Leptospermum scoparium essential oil-Hex-Am emulsion (LC50 = 29.62) was more toxic than the whole essential oil. These findings suggest that L. scoparium essential oil is a promising source of mosquito larvicide and that Hex-Am is an excellent emulsifier for L. scoparium essential oil for use as a larvicide.
Collapse
|