1
|
Lehmann J, Günzel Y, Khosravian M, Cassau S, Kraus S, Libnow JS, Chang H, Hansson BS, Breer H, Couzin-Fuchs E, Fleischer J, Krieger J. SNMP1 is critical for sensitive detection of the desert locust aromatic courtship inhibition pheromone phenylacetonitrile. BMC Biol 2024; 22:150. [PMID: 38973001 PMCID: PMC11229289 DOI: 10.1186/s12915-024-01941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.
Collapse
Affiliation(s)
- Joris Lehmann
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yannick Günzel
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution From Lab to Field, Konstanz, Germany
| | - Maryam Khosravian
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sina Cassau
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Susanne Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Johanna S Libnow
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hetan Chang
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bill S Hansson
- Department of Evolutionary Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heinz Breer
- Department of Physiology (190V), Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Joerg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Chang H, Unni AP, Tom MT, Cao Q, Liu Y, Wang G, Llorca LC, Brase S, Bucks S, Weniger K, Bisch-Knaden S, Hansson BS, Knaden M. Odorant detection in a locust exhibits unusually low redundancy. Curr Biol 2023; 33:5427-5438.e5. [PMID: 38070506 DOI: 10.1016/j.cub.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Olfactory coding, from insects to humans, is canonically considered to involve considerable across-fiber coding already at the peripheral level, thereby allowing recognition of vast numbers of odor compounds. We show that the migratory locust has evolved an alternative strategy built on highly specific odorant receptors feeding into a complex primary processing center in the brain. By collecting odors from food and different life stages of the locust, we identified 205 ecologically relevant odorants, which we used to deorphanize 48 locust olfactory receptors via ectopic expression in Drosophila. Contrary to the often broadly tuned olfactory receptors of other insects, almost all locust receptors were found to be narrowly tuned to one or very few ligands. Knocking out a single receptor using CRISPR abolished physiological and behavioral responses to the corresponding ligand. We conclude that the locust olfactory system, with most olfactory receptors being narrowly tuned, differs from the so-far described olfactory systems.
Collapse
Affiliation(s)
- Hetan Chang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Afairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Anjana P Unni
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Megha Treesa Tom
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Qian Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Afairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lucas Cortés Llorca
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Sabine Brase
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Sascha Bucks
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Kerstin Weniger
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany.
| |
Collapse
|
3
|
Cassau S, Degen A, Krüger S, Krieger J. The specific expression patterns of sensory neuron membrane proteins are retained throughout the development of the desert locust Schistocerca gregaria. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100053. [PMID: 36874554 PMCID: PMC9974456 DOI: 10.1016/j.cris.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The desert locust Schistocerca gregaria detects odorants through olfactory sensory neurons (OSNs) that are surrounded by non-neuronal support cells (SCs). OSNs and SCs are housed in cuticle structures, named sensilla found abundantly on the antenna in all developmental stages of the hemimetabolic insect. In insects, multiple proteins expressed by OSNs and SCs are indicated to play a pivotal role in the detection of odorants. This includes insect-specific members of the CD36 family of lipid receptors and transporters called sensory neuron membrane proteins (SNMPs). While the distribution pattern of the SNMP1 and SNMP2 subtypes in OSNs and SCs across different sensilla types has been elucidated for the adult S. gregaria antenna, their localization in cells and sensilla of different developmental stages is unclear. Here, we determined the SNMP1 and SNMP2 expression topography on the antenna of the first, third and fifth instar nymphs. Through FIHC experiments we found that in all developmental stages SNMP1 is expressed in OSNs and SCs of the trichoid and basiconic sensilla while SNMP2 is restricted to the SCs of the basiconic and coeloconic sensilla thus resembling the adult arrangement. Our results demonstrate that both SNMP types have defined cell- and sensilla-specific distribution patterns established already in the first instar nymphs and retained into the adult stage. This conserved expression topography underlines the importance of SNMP1 and SNMP2 in olfactory processes throughout the development of the desert locust.
Collapse
Affiliation(s)
- Sina Cassau
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| | - Angelina Degen
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| | - Stephanie Krüger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Developmental Biology, 06120 Halle (Saale), Germany
- Martin Luther University Halle-Wittenberg, Biocenter, Microscopy Unit, 06120 Halle (Saale), Germany
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Cassau S, Sander D, Karcher T, Laue M, Hause G, Breer H, Krieger J. The Sensilla-Specific Expression and Subcellular Localization of SNMP1 and SNMP2 Reveal Novel Insights into Their Roles in the Antenna of the Desert Locust Schistocerca gregaria. INSECTS 2022; 13:insects13070579. [PMID: 35886755 PMCID: PMC9317141 DOI: 10.3390/insects13070579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The desert locust, Schistocerca gregaria, can form gigantic swarms of millions of individuals that devastate the vegetation of invaded landscapes. Locust food search, reproduction, and aggregation behaviors are triggered and controlled by complex olfactory signals. Insects detect odorants through different types of olfactory sensilla on the antenna that house olfactory sensory neurons and associated support cells, both of which express the proteins required for olfactory signaling. Among these proteins, two members of the CD36 lipid transporter/receptor family, named sensory neuron membrane proteins 1 and 2 (SNMP1 and SNMP2), are indicated to be of vital importance. Towards a better understanding of the role of the two SNMPs in the olfactory system of S. gregaria, we have analysed their antennal topography and subcellular localization using specific antibodies. The results indicate sensilla type- and cell type-specific distribution patterns of the SNMP proteins. SNMP1 was located in the receptive dendrites of subpopulations of olfactory sensory neurons as well as in the microvilli of associated support cells, suggesting a dual function of this protein, both in olfactory signal detection and in sensillum lymph maintenance, respectively. In contrast, SNMP2 was found solely in support cells and their microvilli membranes, suggesting a role limited to sensillum lymph recovery processes. Abstract Insect olfactory sensilla house olfactory sensory neurons (OSNs) and supports cells (SCs). The olfactory sensory processes require, besides the odorant receptors (ORs), insect-specific members of the CD36 family, named sensory neuron membrane proteins (SNMPs). While SNMP1 is considered to act as a coreceptor in the OR-mediated detection of pheromones, SNMP2 was found to be expressed in SCs; however, its function is unknown. For the desert locust, Schistocerca gregaria, we previously visualized mRNA for SNMP1 in OSNs and SNMP2 mRNA in cells associated with OSN clusters. Towards an understanding of their functional implication, it is imperative to explore the cellular and the subcellular localization the SNMP proteins. Therefore, we have generated polyclonal antibodies against SNMP1 and SNMP2 and used fluorescence immunohistochemistry (FIHC) to visualize the SNMP proteins. We found SNMP1 in the somata and respective dendrites of all OSNs in trichoid sensilla and in subsets of OSNs in basiconic sensilla. Notably, SNMP1 was also detected in SCs of these sensilla types. In contrast, SNMP2 protein was only visualized in SCs of basiconic and coeloconic sensilla, but not of trichoid sensilla. Exploring the subcellular localization by electron microscopy using anti-SNMP1-ab and anti-SNMP2-ab revealed an immunogold labelling of SC microvilli bordering the sensillum lymph. Together our findings suggest a dual role of SNMP1 in the antenna of S. gregaria, in some OSN subpopulations in odor detection as well as in functions of some SCs, whereas the role of SNMP2 is limited to the functions of support cells.
Collapse
Affiliation(s)
- Sina Cassau
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- Correspondence: (S.C.); (J.K.)
| | - Doreen Sander
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
| | - Thomas Karcher
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- BMG Labtech GmbH, 77799 Ortenberg, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4 (ZBS 4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Gerd Hause
- Microscopy Unit, Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (D.S.); (T.K.)
- Correspondence: (S.C.); (J.K.)
| |
Collapse
|
5
|
Identification and expression profiling of chemosensory membrane protein genes in Achelura yunnanensis (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100876. [PMID: 34246924 DOI: 10.1016/j.cbd.2021.100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
During the past decade, antennal transcriptome sequencing has been applied to at least 50 species from 16 families of the Lepidoptera order of insects, emphasizing the identification and characterization of chemosensory-related genes. However, little is known about the chemosensory genes in the Zygaenidae family of Lepidoptera. Herein, we report the transmembrane protein gene repertoires involved in chemoreception from Achelura yunnanensis (Lepidoptera: Zygaenidae) through transcriptome sequencing, bioinformatics, phylogenetics and polymerase chain reaction (PCR) approaches. Transcriptome analysis led to the generation of 555.47 million clean reads and accumulation of 83.30 gigabases of data. From this transcriptome, 132 transcripts encoding 69 odorant receptors (ORs), 33 gustatory receptors (GRs), 26 ionotropic receptors (IRs), and four sensory neuron membrane proteins (SNMPs) were identified, 69 of which were full-length sequences. Notably, the number of SNMPs in A. yunnanensis was the largest set in Lepidoptera to date. Phylogenetic analysis combined with sequence homology highlighted several conserved groups of chemoreceptors, including pheromone receptors (a so-called pheromone receptor (PR) clade: AyunOR50 and novel PR members: AyunOR39 and OR40), a phenylacetaldehyde-sensing OR (AyunOR28), carbon dioxide receptors (AyunGR1-3), and antennal IRs (13 A-IRs). In addition, a Zygaenidae-specific OR expansion was observed, including 15 A. yunnanensis members. Expression profiles revealed 99 detectable chemosensory genes in the antennae and 20 in the reproductive tissues, some of which displayed a sex-biased expression. This study identifies potential olfactory molecular candidates for sensing sex pheromones, phenylacetaldehyde or other odorants, and provides preliminary evidence for the putative reproductive function of chemosensory membrane protein genes in A. yunnanensis.
Collapse
|
6
|
Abstract
The sense of smell enables insects to recognize olfactory signals crucial for survival and reproduction. In insects, odorant detection highly depends on the interplay of distinct proteins expressed by specialized olfactory sensory neurons (OSNs) and associated support cells which are housed together in chemosensory units, named sensilla, mainly located on the antenna. Besides odorant-binding proteins (OBPs) and olfactory receptors, so-called sensory neuron membrane proteins (SNMPs) are indicated to play a critical role in the detection of certain odorants. SNMPs are insect-specific membrane proteins initially identified in pheromone-sensitive OSNs of Lepidoptera and are indispensable for a proper detection of pheromones. In the last decades, genome and transcriptome analyses have revealed a wide distribution of SNMP-encoding genes in holometabolous and hemimetabolous insects, with a given species expressing multiple subtypes in distinct cells of the olfactory system. Besides SNMPs having a neuronal expression in subpopulations of OSNs, certain SNMP types were found expressed in OSN-associated support cells suggesting different decisive roles of SNMPs in the peripheral olfactory system. In this review, we will report the state of knowledge of neuronal and non-neuronal members of the SNMP family and discuss their possible functions in insect olfaction.
Collapse
Affiliation(s)
- Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|