1
|
Chiappa G, Fassio G, Modica MV, Oliverio M. Potential Ancestral Conoidean Toxins in the Venom Cocktail of the Carnivorous Snail Raphitoma purpurea (Montagu, 1803) (Neogastropoda: Raphitomidae). Toxins (Basel) 2024; 16:348. [PMID: 39195758 PMCID: PMC11359391 DOI: 10.3390/toxins16080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Venomous marine gastropods of the superfamily Conoidea possess a rich arsenal of toxins, including neuroactive toxins. Venom adaptations might have played a fundamental role in the radiation of conoideans; nevertheless, there is still no knowledge about the venom of the most diversified family of the group: Raphitomidae Bellardi, 1875. In this study, transcriptomes were produced from the carcase, salivary glands, and proximal and distal venom ducts of the northeastern Atlantic species Raphitoma purpurea (Montagu, 1803). Using a gut barcoding approach, we were also able to report, for the first time, molecular evidence of a vermivorous diet for the genus. Transcriptomic analyses revealed over a hundred putative venom components (PVC), including 69 neurotoxins. Twenty novel toxin families, including some with high levels of expansion, were discovered. No significant difference was observed between the distal and proximal venom duct secretions. Peptides related to cone snail toxins (Cerm06, Pgam02, and turritoxin) and other venom-related proteins (disulfide isomerase and elevenin) were retrieved from the salivary glands. These salivary venom components may constitute ancestral adaptations for venom production in conoideans. Although often neglected, salivary gland secretions are of extreme importance for understanding the evolutionary history of conoidean venom.
Collapse
Affiliation(s)
- Giacomo Chiappa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Giulia Fassio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Via Gregorio Allegri 1, 00198 Rome, Italy;
| | - Marco Oliverio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| |
Collapse
|
2
|
Yang H, Lu J, Wang K, Wu C, Yang B, Zhu J. Transcriptome Analysis Reveals the Venom Genes of the Ectoparasitoid Habrobracon hebetor (Hymenoptera: Braconidae). INSECTS 2024; 15:426. [PMID: 38921141 PMCID: PMC11203415 DOI: 10.3390/insects15060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
The ectoparasitoid Habrobracon hebetor (Hymenoptera: Braconidae) exhibits a broad parasitic capability towards various lepidopteran pests, with venom serving as a crucial virulent factor ensuring successful parasitization and subsequent host mortality. Analyzing the constituents of its venom is essential for elucidating the mechanisms underlying efficient host killing by this parasitoid and for exploring potentially functional venom proteins. Through a transcriptomic analysis, a total of 34 venom proteins were identified within the venom of H. hebetor, encompassing known components such as serine protease, metalloproteinase, esterase, and serine protease inhibitors commonly present in parasitoid venoms. Unique components like paralytic protein and ion transport peptide-like were identified, possibly specific to certain parasitoids, along with novel proteins with uncharacterized functions. Spatial gene expression profiling of the identified venom proteins using transcriptomic data, corroborated by quantitative PCR validation for 13 randomly selected proteins, revealed abundant expression levels in the venom apparatus, affirming them as genuine venom components. Notably, the paralytic protein exhibited prominent expression, with the highest FPKM (fragments per kilobase of transcript per million fragments mapped) value of 24,704.87 in the venom apparatus, indicative of its significant role in successful parasitism by H. hebetor. The identification of these venom proteins establishes a foundation for the further exploration of bioactive agents for pest management strategies.
Collapse
Affiliation(s)
- Hongyan Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Jingyi Lu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Kui Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (H.Y.); (J.L.); (K.W.); (C.W.); (B.Y.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Sun JQ, Zhao KY, Zhang ZX, Li XP. Two novel teleost calreticulins PoCrt-1/2, with bacterial binding and agglutination activity, are involved in antibacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109203. [PMID: 37940083 DOI: 10.1016/j.fsi.2023.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Calreticulin (Crt), a conserved lectin-like pleiotropic protein, plays crucial roles in mammalian immune response. In fish, the immunological function of Crt is limited investigated. Herein, we studied the antibacterial immunity of two type of Crt homologues (i.e. PoCrt-1 and PoCrt-2) in Japanese flounder (Paralichthys olivaceus). PoCrt-1 and PoCrt-2 are composed of 419 and 427 amino acid residues respectively, with 69.09% overall sequence identities with each other. Both PoCrt-1 and PoCrt-2 contain a signal peptide and three functional domains i.e. N-, P- and C-domains. Both PoCrt-1 and PoCrt-2 were constitutively expressed at various tissues with highest expression level in liver, and obviously regulated by Edwardsiella tarda and Vibrio harveyi. Furthermore, recombinant PoCrt-1 and PoCrt-2 (rPoCrt-1 and rPoCrt-2) could bind to different Gram-negative bacteria with highest binding index with E. tarda. At same time, in vitro rPoCrt-1 and rPoCrt-2 could agglutinate E. tarda, V. harveyi, and Vibrio anguillarum, and inhibit the bacterial growth. Similarly, in vivo rPoCrt-1 and rPoCrt-2 could significantly suppress the dissemination of E. tarda. Overall, these observations add new insights into the antibacterial immunity of Crt in P. olivaceus.
Collapse
Affiliation(s)
- Jia-Qi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | | | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
4
|
Teng Z, Huo M, Zhou Y, Zhou Y, Liu Y, Lin Y, Zhang Q, Zhang Z, Wan F, Zhou H. Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps. INSECTS 2023; 14:insects14050486. [PMID: 37233114 DOI: 10.3390/insects14050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Despite the importance of circadian rhythms in insect behavior, our understanding of circadian activity and the molecular oscillatory mechanism in parasitoid wasp circadian clocks is limited. In this study, behavioral activities expected to be under the control of the endogenous circadian system were characterized in an ectoparasitoid wasp, Pachycrepoideus vindemmiae. Most adults exhibited emergence between late night and early morning, while mating only occurred during the daytime, with a peak at midday. Oviposition had three peaks in the early morning, late day, or early night and late night. Additionally, we identified eight putative clock genes from P. vindemmiae. The quantitative PCR (qPCR) results indicate that most clock genes showed significant rhythmic expressions. Our comparative analysis of clock genes in P. vindemmiae and 43 other parasitoid wasps revealed that none of the wasps possessed the timeless and cry1 genes commonly found in some other insect species, suggesting that the circadian clock system in parasitoid wasps is distinct from that in other non-Hymenoptera insects such as Drosophila. Thus, this study attempted to build the first hypothetical circadian clock model for a parasitoid wasp, thus generating hypotheses and providing a platform for the future functional characterization of P. vindemmiae clock genes as well as those of other parasitoid wasps. Finally, these findings on P. vindemmiae circadian activity will aid the development of effective field release programs for biological control, which can be tested under field conditions.
Collapse
Affiliation(s)
- Ziwen Teng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengran Huo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuqi Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yunjie Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Lin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiqi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Zhang J, Wang F, Yuan B, Yang L, Yang Y, Fang Q, Kuhn JH, Song Q, Ye G. A novel cripavirus of an ectoparasitoid wasp increases pupal duration and fecundity of the wasp's Drosophila melanogaster host. THE ISME JOURNAL 2021; 15:3239-3257. [PMID: 34007060 PMCID: PMC8528920 DOI: 10.1038/s41396-021-01005-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023]
Abstract
We identified a 9332-nucleotide-long novel picornaviral genome sequence in the transcriptome of an agriculturally important parasitoid wasp (Pachycrepoideus vindemmiae (Rondani, 1875)). The genome of the novel virus, Rondani's wasp virus 1 (RoWV-1), contains two long open reading frames encoding a nonstructural and a structural protein, respectively, and is 3'-polyadenylated. Phylogenetic analyses firmly place RoWV-1 into the dicistrovirid genus Cripavirus. We detected RoWV-1 in various tissues and life stages of the parasitoid wasp, with the highest virus load measured in the larval digestive tract. We demonstrate that RoWV-1 is transmitted horizontally from infected to uninfected wasps but not vertically to wasp offspring. Comparison of several important biological parameters between the infected and uninfected wasps indicates that RoWV-1 does not have obvious detrimental effects on wasps. We further demonstrate that RoWV-1 also infects Drosophila melanogaster (Meigen, 1830), the hosts of the pupal ectoparasitoid wasps, and thereby increases its pupal developmental duration and fecundity, but decreases the eclosion rate. Together, these results suggest that RoWV-1 may have a potential benefit to the wasp by increasing not only the number of potential wasp hosts but also the developmental time of the hosts to ensure proper development of wasp offspring.
Collapse
Affiliation(s)
- Jiao Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bo Yuan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
6
|
Huang Y, Li YF, Wang RX, Xie MF, Shi Y, Zhao Z. Calreticulin functions in antimicrobial immunity of obscure puffer Takifugu obscurus. Mol Immunol 2021; 140:77-86. [PMID: 34673374 DOI: 10.1016/j.molimm.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Calreticulin (Crt) is a highly conserved and multi-functional protein with lectin-like properties and important immunological activities. In this study, a Crt homolog, namely, ToCrt, was cloned and characterized from the obscure puffer Takifugu obscurus with an open reading frame of 1278 bp encoding a putative protein of 425 amino acids. The deduced amino acid sequence of ToCrt consisted of three conserved structural domains: N-domain, P-domain, and C-terminal domain. In the phylogenetic tree, ToCrt formed a separate cluster with three Crts from other pufferfish species (Takifugu rubripes, Takifugu flavidus, and Takifugu bimaculatus). The mRNA transcript of ToCrt was ubiquitously expressed in all the examined tissues in a decreasing order: liver, spleen, kidney, gills, intestine, and heart. After Vibrio harveyi, Edwardsiella tarda, and Aeromonas hydrophila stimulations, the levels of ToCrt mRNA in the kidney and spleen were significantly upregulated compared with that in the control group. The recombinant calreticulin domain of ToCrt (rToCrt) could bind three Gram-negative bacteria (V. harveyi, E. tarda, and A. hydrophila) and polysaccharides from bacterial cell walls such as lipopolysaccharide and peptidoglycan. Meanwhile, rToCrt could agglutinate different kinds of microorganisms and exhibit antimicrobial activity. These results suggested that T. obscurus ToCrt could serve as an antimicrobial effector in the host immune response against invading microorganisms.
Collapse
Affiliation(s)
- Ying Huang
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yun-Feng Li
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Rui-Xia Wang
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Meng-Fan Xie
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yan Shi
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China.
| |
Collapse
|
7
|
Immunomodulatory action of excretory-secretory products of Angiostrongylus cantonensis in a mouse tumour model. Parasitol Res 2020; 119:3705-3718. [PMID: 32901341 DOI: 10.1007/s00436-020-06872-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Excretory-secretory products (ESPs) of parasitic helminths are well known to exert immunostimulation and immunomodulation in hosts. Immune regulation plays a key role in anti-tumour therapy. The present study explored the anti-tumour effect of ESPs released by Angiostrongylus cantonensis. In Hepa1-6 mouse tumour models, ESPs significantly reduced tumour growth. Tumour-bearing mice treated with ESPs had significantly higher CD3+, CD4+, and CD8+ T cell counts than those treated with Freund's adjuvant. In vitro, human hepatocarcinoma HepG2 cells, human lung cancer A549 cells, and normal human liver HL-7702 cells were co-incubated with ESPs for 24 h and 48 h. ESPs significantly accelerated HepG2 apoptosis but had no inhibitory effect on the proliferation of A549 and HL-7702 cells. Apoptotic HepG2 cells displayed condensed nuclei, apoptotic bodies, and swollen endoplasmic reticulum (ER). Expression of the endoplasmic reticulum stress (ERS)-related factors activating transcription factor 6 (ATF6) and C/EBP-homologous protein (CHOP) in HepG2 cells increased with increasing ESP concentration and treatment time. Calreticulin (CRT) is a key effector protein of ESPs, and recombinant calreticulin (rCRT) was produced in BL21 Escherichia coli (E. coli). In contrast to ESPs, rCRT markedly reduced the proliferation of HepG2 cells. The expression levels of ATF6 and CHOP in HepG2 cells treated with 30 μg/mL rCRT significantly increased at 48 h. Notably, these findings synergistically suggest that ESPs and rCRT are promising candidates for anti-tumour immunotherapy.
Collapse
|
8
|
Wan B, Yang L, Zhang J, Qiu L, Fang Q, Yao H, Poirié M, Gatti JL, Ye G. The Venom of the Ectoparasitoid Wasp Pachycrepoideus vindemiae (Hymenoptera: Pteromalidae) Induces Apoptosis of Drosophila melanogaster Hemocytes. INSECTS 2020; 11:E363. [PMID: 32545289 PMCID: PMC7349765 DOI: 10.3390/insects11060363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
The pupal ectoparasitoid Pachycrepoideus vindemiae injects venom into its fly hosts prior to oviposition. We have shown that this venom causes immune suppression in Drosophila melanogaster pupa but the mechanism involved remained unclear. Here, we show using transgenic D. melanogaster with fluorescent hemocytes that the in vivo number of plasmatocytes and lamellocytes decreases after envenomation while it has a limited effect on crystal cells. After in vitro incubation with venom, the cytoskeleton of plasmatocytes underwent rearrangement with actin aggregation around the internal vacuoles, which increased with incubation time and venom concentration. The venom also decreased the lamellocytes adhesion capacity and induced nucleus fragmentation. Electron microscopy observation revealed that the shape of the nucleus and mitochondria became irregular after in vivo incubation with venom and confirmed the increased vacuolization with the formation of autophagosomes-like structures. Almost all venom-treated hemocytes became positive for TUNEL assays, indicating massive induced apoptosis. In support, the caspase inhibitor Z-VAD-FMK attenuated the venom-induced morphological changes suggesting an involvement of caspases. Our data indicate that P. vindemiae venom inhibits D. melanogaster host immunity by inducing strong apoptosis in hemocytes. These assays will help identify the individual venom component(s) responsible and the precise mechanism(s)/pathway(s) involved.
Collapse
Affiliation(s)
- Bin Wan
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Jiao Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Liming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Marylène Poirié
- Institut Sophia Agrobiotec h (ISA), Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, 06903 Sophia Antipolis, France; (M.P.); (J.-L.G.)
| | - Jean-Luc Gatti
- Institut Sophia Agrobiotec h (ISA), Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, 06903 Sophia Antipolis, France; (M.P.); (J.-L.G.)
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| |
Collapse
|