1
|
Lan Y, Li J, Zhang S, Qin Q, Liu D, Luo C, Han S, Wang D, He Y. Potential Involvement of Buchnera aphidicola (Enterobacteriales, Enterobacteriaceae) in Biotype Differentiation of Sitobion avenae (Hemiptera: Aphididae). INSECTS 2024; 15:980. [PMID: 39769582 PMCID: PMC11679945 DOI: 10.3390/insects15120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Buchnera aphidicola, an obligate endosymbiont of most aphid species, can influence aphids' host adaptability through amino acid metabolism, potentially mediating biotype differentiation. However, its role in the biotype differentiation of Sitobion avenae remains unclear. To address this issue, six S. avenae biotypes were tested in this study. Buchnera abundance varied among biotypes fed on different wheat/barley varieties (i.e., Zhong 4 wumang, 186-TM12-34; Dulihuang, Zaoshu No.3, Xiyin No.2). The reduction in Buchnera abundance through antibiotic (rifampicin) treatment altered the virulence of five S. avenae biotypes. Based on transcriptome analysis, the differential expression of three genes (i.e., LeuB, TrpE, and IlvD) related to leucine, tryptophan, isoleucine, and valine metabolism was detected between different biotypes. Principal component analysis showed that leucine and tryptophan deficiencies most significantly impacted nymph development duration and aphid fecundity. Additionally, a neighbor-joining phylogenetic tree indicated the genetic differentiation of Buchnera among different biotypes. These results suggest Buchnera-mediated amino acid metabolism is correlated with biotype differentiation in S. avenae, although the precise mechanisms by which Buchnera influences this differentiation require further investigation. This study can offer a theoretical basis for the development of resistant crops, leading to the sustainable control of this aphid and reduced reliance on chemical insecticides.
Collapse
Affiliation(s)
- Yanyan Lan
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (J.L.); (S.Z.); (Q.Q.)
| | - Jingpeng Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (J.L.); (S.Z.); (Q.Q.)
| | - Shuo Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (J.L.); (S.Z.); (Q.Q.)
| | - Qiuju Qin
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (J.L.); (S.Z.); (Q.Q.)
| | - Deguang Liu
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (D.L.); (C.L.)
| | - Chen Luo
- College of Plant Protection, Northwest A&F University, Yangling 712100, China; (D.L.); (C.L.)
| | - Shipeng Han
- College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China;
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (J.L.); (S.Z.); (Q.Q.)
| | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (J.L.); (S.Z.); (Q.Q.)
| |
Collapse
|
2
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Khan MM, Chen L, Ren X, Zhou S, Fernández-Grandon GM, Zalucki MP, Lu Y. Behavioral and Physiological Plasticity Provides Insights into Molecular Based Adaptation Mechanism to Strain Shift in Spodoptera frugiperda. Int J Mol Sci 2021; 22:10284. [PMID: 34638623 PMCID: PMC8508907 DOI: 10.3390/ijms221910284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
How herbivorous insects adapt to host plants is a key question in ecological and evolutionary biology. The fall armyworm, (FAW) Spodoptera frugiperda (J.E. Smith), although polyphagous and a major pest on various crops, has been reported to have a rice and corn (maize) feeding strain in its native range in the Americas. The species is highly invasive and has recently established in China. We compared behavioral changes in larvae and adults of a corn population (Corn) when selected on rice (Rice) and the molecular basis of these adaptational changes in midgut and antennae based on a comparative transcriptome analysis. Larvae of S. frugiperda reared on rice plants continuously for 20 generations exhibited strong feeding preference for with higher larval performance and pupal weight on rice than on maize plants. Similarly, females from the rice selected population laid significantly more eggs on rice as compared to females from maize population. The most highly expressed DEGs were shown in the midgut of Rice vs. Corn. A total of 6430 DEGs were identified between the populations mostly in genes related to digestion and detoxification. These results suggest that potential adaptations for feeding on rice crops, may contribute to the current rapid spread of fall armyworm on rice crops in China and potentially elsewhere. Consistently, highly expressed DEGs were also shown in antennae; a total of 5125 differentially expressed genes (DEGs) s were identified related to the expansions of major chemosensory genes family in Rice compared to the Corn feeding population. These results not only provide valuable insight into the molecular mechanisms in host plants adaptation of S. frugiperda but may provide new gene targets for the management of this pest.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, China;
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forest University, Fuzhou 350002, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | | | - Myron P. Zalucki
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| |
Collapse
|
3
|
Vandenhole M, Dermauw W, Van Leeuwen T. Short term transcriptional responses of P450s to phytochemicals in insects and mites. CURRENT OPINION IN INSECT SCIENCE 2021; 43:117-127. [PMID: 33373700 PMCID: PMC8082277 DOI: 10.1016/j.cois.2020.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play a key role in the detoxification of phytochemicals in arthropod herbivores. We present here an overview of recent progress in understanding the breadth and specificity of gene expression plasticity of P450s in response to phytochemicals. We discuss experimental setups and new findings in mechanisms of P450 regulation. Whole genome transcriptomic analysis of arthropod herbivores, either after direct administration of phytochemicals or after host plant shifts, allowed to integrate various levels of chemical complexity and lead to the unbiased identification of responsive P450 genes. However, despite progress in identification of inducible P450s, the link between induction and metabolism is still largely unexplored, and to what extent the overall response is biologically functional should be further investigated. In the near future, such studies will be more straightforward as forward and reverse genetic tools become more readily available.
Collapse
Affiliation(s)
- Marilou Vandenhole
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Transcriptome profiling revealed potentially important roles of defensive gene expression in the divergence of insect biotypes: a case study with the cereal aphid Sitobion avenae. BMC Genomics 2020; 21:546. [PMID: 32762647 PMCID: PMC7430832 DOI: 10.1186/s12864-020-06950-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background Many insects can develop differential biotypes on variable host plants, but the underlying molecular factors and mechanisms are not well understood. To address this issue, transcriptome profiling analyses were conducted for two biotypes of the cereal aphid, Sitobion avenae (Fabricius), on both original and alternative plants. Results Comparisons between both biotypes generated 4174 differentially expressed unigenes (DEGs). In their response to host plant shift, 39 DEGs were shared by both biotypes, whereas 126 and 861 DEGs occurred only in biotypes 1 and 3, respectively. MMC (modulated modularity clustering) analyses showed that specific DEGs of biotypes 1 and 3 clustered into five and nine transcriptional modules, respectively. Among these DEGs, defense-related genes underwent intensive expression restructuring in both biotypes. However, biotype 3 was found to have relatively lower gene transcriptional plasticity than biotype 1. Gene enrichment analyses of the abovementioned modules showed functional divergence in defensive DEGs for the two biotypes in response to host transfer. The expression plasticity for some defense related genes was showed to be directly related to fecundity of S. avenae biotypes on both original and alternative plants, suggesting that expression plasticity of key defensive genes could have significant impacts on the adaptive potential and differentiation of S. avenae biotypes on different plants. Conclusions The divergence patterns of transcriptional plasticity in defense related genes may play important roles in the phenotypic evolution and differentiation of S. avenae biotypes. Our results can provide insights into the role of gene expression plasticity in the divergence of insect biotypes and adaptive evolution of insect populations.
Collapse
|